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Abstract 

I -  

There a r e  at least  two practical motivations for  the development 

of theoretically optimum methods of performing an operation such as de- 

modulation. The first is to determine, by calculation, the performance 

of the optimum system for  comparison with that of existing or  proposed 

practical systems, and the second is to determine the feasibility of imple- 

menting the optimum system or some approximation of it. The former  is 

particularly useful in making decisions concerning the amount of effort 

which should be expended on improving existing systems, and the latter 

gives direction to that effort. The optimization must be with respect to 

some specified performance parameter. 

The operation studied here is that of demodulation of noisy, binary, 

pulse-code-modulated waveforms. 

the operation is optimized is error-probability. 

modulation operation i s  determined for  waveforms with and without inter-  bit 

dependence. 

dependence between data samples represented by the PCM "words" o r  code 

groups, and that the demodulation decisions a r e  made one-word-at-a- time, 

but utilizing n statistically dependent, receivcd noisy  words. The noise is 

assumed independent of the transmitted signal and additive and the number 

of words utilized, n, is  arbitrary. 

The performance parameter for which 

The minimum-error de- 

It is assumed that this dependence results f rom statistical 

For  the special case of no inter-bit dependence the minimum 

attainable e r r o r  probabilities may be calculated directly for any signal-to- 

noise condition, assuming band-limited white gaussian noise. A comparison 

of these theoretical results with experimental results obtained independently 

in two different laboratories indicates that for bi t -error  probabilities lower 

than about 0. 05 the minimum e r ro r  demodulator offers no significant im- 

provement over conventional demodulators if no inter-  bit dependence exists. 



For  independent, additive, band-limited white gaussian noise, a 

method is developed for simulating with a digital computer the minimum- 

e r r o r  demodulation with statistical dependence between data samples. 

Minimum e r r o r  probabilities a re  then computed, by a monte-carlo method, 

for  gaussian data and for n = 2 and n = 1. 

3-bit and 6 bit code words. 

waveforms used to represent the binary digits (or  bits). These results 

indicate that for  word-error probabilities l e s s  than about 0. 1, no very 

significant power gains accrue from the use of statistical dependence in the 

data unless the correlation coefficients between data samples is large (i. e . ,  

0.98 or greater)  for a l a r g e  number of transmitted samples. However, the 

resul ts  also indicate that the effect of using the statistical dependence in 

the data is to reduce e r r o r s  in  the high order  (most significant) bits of the 

code. Therefore the e r r o r  amplitude reduction may be considerable even 

if  the reduction in e r r o r  probability is not. 

This computation is done for 

The results a r e  applicable regardless of the 

Possible implementations of the minimum-error demodulator as 

well as some simpler approximate implementations a r e  discus sed briefly. 
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INTRODUCTION 

In demodulation, a s  in filtering and other operations on noise- 

contaminated signals, a question of prime concern when contemplating 

improvements in the operation is, "How much improvement is theoretically 

possible?" Some measure of the "goodness" of the operation (e. g., r m s  

e r r o r ,  e r r o r  probability, etc. ) must be selected if a quantitative answer to 

this question is desired. For  any selected measure of goodness (or  per- 

formance parameter") there is  generally a fundamental limitation on how 

well the operation can be performed with given signal power and noise 

conditions. 

ment of theories of optimum operations such as the Wiener fi l ter  theory 

(Reference 13) and theories regarding optimum detection of signals in 

noise (see, for example, Reference 3). Such theoretical treatments provide 

a n  optimum system (based on optimizing some performance parameter such 

as r m s  e r r o r  o r  probability of e r r o r )  whose performance may be calculated 

and compared with existing practical systems in order  to determine the 

improvement theore tically possible. 

Efforts to determine these limitations have led to the develop- 

In Rauch's report on improved demodulation (Reference 1 l),  the 

maximum-likelihood demodulator is derived, assuming gaussian data and 

additive gaussian noise, for a large class  of modulation operators (e. g., 

FM,  PM, AM, PAM, PDM, etc. ). However, a s  pointed out in that report, 

the results a r e  not applicable to PCM (Pulse Code Modulation) even when 

the distributions of the data and the noise random processes can be assumed 

gaussian. 

modulation should be a very meaningful one for PCM communications since 

maximizing the probability of selecting cor rec t  transmitted signals at the 

receiver i s  equivalent to minimizing the probability of e r ro r .  

Yet it appears that the maximum-likelihood criterion for de- 

- 1 -  
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This dissertation treats the PCM demodulation problem by de- 

riving the minimum- e r r o r  demodulator, assuming independent additive 

noise. The e r r o r  probabilities (vs. signal-to-noise ratios) attained by 

this demodulator for band-limited white gaussian noise a r e  then calcu- 

lated. This is done first fo r  completely random PCM signals (i. e., without 

considering data statistics) and then for gaussian data with dependence be- 

tween data samples. 

attainable under the assumed conditions, which we can compare with e r r o r  

probabilities obtained with existing or  proposed practical demodulation 

schemes. 

We thus obtain the lowest possible e r r o r  probabilities 

It should be noted that minimizing e r r o r  probability does not in 

general result  in minimizing other cost  functionals or  performance para- 

meters  such as the mean square e r r o r  of the quantity represented by the 

code words. 

of goodness, then i t  i s  desirable to optimize the demodulation operation 

with respect to some performance parameter which is a satisfactory meas- 

ure  of goodness. Other performance parameters,  or cost  functionals, most 

often considered a r e  statistical measures of e r r o r  amplitude such as mean- 

s quare - e r r o r  o r  mean- abs olute - er ror .  The s tatistical dependence between 

data samples may be viewed as redundancy in the data. 

cal  dependence is a statistical constraint upon the relative amplitudes of 

the data samples it seems intuitively that the data redundancy could be used 

more effectively for reducing some statistical measure of e r r o r  amplitude 

than for  reducing the probability of e r r o r  without regard to e r r o r  ampli- 

tude. 

The results also indicate that the minimum-error demodulation operation 

developed here will  be more effective in reducing statist ical  measures  of 

e r r o r  amplitude than for reducing e r r o r  probability even though the oper- 

ation is optimized for the latter.  

If e r r o r  probability is not considered a satisfactory measure 

Since this statisti- 

The results obtained in this dissertation indicate this to be true. 
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The interpretation of the meaning of a minimum-error-proba- 

bility cri terion for demodulation is not necessarily unique. It might be 

interpreted as the cri terion of selecting the most probable sequence of 

data sample values over some interval of time including many data 

samples, o r  it might be interpreted as the cri terion of selecting the most 

probable value f o r  each sample in the sequence. These do not in general 

give the same result. 

since selection of the most probable value for  each sample, o r  PCM "word, I '  

yields the lowest possible word-error probability. 

The latter interpretation is used in this dissertation 

The theoretical optimum system may be impractical to construct 

and use, but with sufficient intuition a practical "near- optimum" system 

might be devised (possibly by modification of the optimization process) 

whose performance can then be compared with that of existing systems to  

determine the improvement afforded, if any, and compared with the theo- 

retical  optimum to determine whether further significant improvement is 

possible. Two such systems are  briefly discussed in Chapter 6 .  



Chapter 1 

MINIMUM-ERROR DEMODULATION OF RANDOM 

BINARY PCM WAVEFORMS 

Let us first consider the minimum-error demodulation, o r  

estimation, of binary PCM signals which have no dependence between bits, 

and which have been contaminated by independent additive band-limited white 

gaussian noise. A binary 

PCM signal of duration T is divided into equal intervals of time, TB, called 

"bit-times" during each of which the signal may assume either of two speci- 

fied waveforms. 

be restricted to the use of two signal levels, but might be represented by 

two specified functions of time, one of which represents a "yes" bit and the 

other of which represents a "noft bit. Fo r  idealized PCMIAM, for example, 

the two specified functions of time representing "yes" bits and "no" bits are 

sinusoids of the same frequency and phase but of different amplitudes. 

The signal notation used is indicated in Figure 1. 

The binary character of the transmitted signals need not 

If we wish to minimize the probability of e r r o r  in estimating t rans-  

mitted signals we must select, fo r  each received signal z(t) ,  the t rans-  

mitted signal, y( t), which maximizes the inverse conditional probability 

distribution of the transmitted signal, y(t), given the received signal, z(t): 

where: p(z I y)  is the conditional probability density function of z ( t )  when 

y(t) is known. 

f(y) is the marginal probability distribution of the y( t )  waveforms. 

g(z) is the marginal probability density function of the z( t )  wave- 

forms. 

The probability density functions, p(z Iy) and g ( z )  a r e  interpreted 

as probability per  unit volume of z-waveform space. We may consider the 

- 4 -  
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co-ordinate values in the waveform space to be the time samples of a 

band-limited waveform where the sampling rate is taken arbi t rar i ly  high 

but finite. 

If dz is an  infinitesimal hyper-volume in the waveform space, the relative 

probabilities of the z-waveforms wil l  be p(z 1y)dz (a posteriori)  o r  g(z)dz 

(a priori). 

have been omitted since they cancel each other. 

Then for finite T the waveform space is of finite dimension. 

In the above equation the dz's of numerator and denominator 

It has been shown (see Reference 14, 

additive, band-limited white gaus sian noise of 
2 

height K : 

page 69) that for independent, 

one-sided power spectral  

where K 

of time, T, occupied by the signal. The t e r m  "band-limited white" here  

means that the power spectrum is of uniform height, K , f rom zero frequency 

to some arbi t rar i ly  large but finite frequency, W, and of zero  height for all 

higher frequencies. 

is a (normalizing) constant and the integration is over the interval 1 

2 

For  the random signals being considered in this chapter, all of 

the possible binary PCM signals in the interval T a r e  assumed to have equal 

a pr ior i  probabilities. That is, f (y)  is  the same for  all possible y's. Then 

since g(z) is fixed for any specified z we may write 

where K (z) is constant with respect to y. 2 

Hence the most probable transmitted 

gives the smallest  value for the integral in (1. 

signal, y(t), i s  the one which 

2). But if during any bit-time 

the PCM signal is one of two known waveforms, f l ( t )  o r  f2(t), then the y(t) 

which gives the smallest  value fo r  this integral must give the smallest  value 

Therefore, the most probable y(t) can over each separate bit-interval, TB' 
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be determined one- bit-at-a-time (assuming synchronization) by selecting 

fo r  each bit-time the transmitted signal, y ( t) ,  (given received signal z (t)) 
B B 

which maximizes the inverse conditional probability function: 

(We assume that the bandwidth, W, of the band-limited white noise is large 

compared to 1 / T  

being cor rec t  than does any other method of selection, it has a lower proba- 

bility of being in e r r o r  than does any other method of selection. A device 

which makes such selection i s  therefore the minimum-error demodulator 

) Since such a selection has a greater  probability of B' 

for random binary PCM waveforms with independent, additive, band-limited 

white gaussian noise. L 

It has been shown (see, for example, Reference 7 )  that when the 

binary character of the transmitted PCM signals is represented during-each 

bit-time by either of two known waveforms, f (t) and f (t), the bi t -error  

probability for such a device is: 
1 2 

-00 
2 

where p 
bandwidth equal to the bit rate or, equivalently, the ratio of signal energy pe r  

is the ratio of average signal power to the noise power in a 

bit to noise power per  unit bandwidth. 

and 

(1.5) 
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If f (t) and f ( t )  have the same 1 2 

then eqn. (1. 3) can be written: 

B' where K (z )  is constant wlth respect to y 4 

Hence the minimum-error demodulation for this case can be 

accomplished by correlating the received signal z ( t )  during each bit-time 

with each of the two possible transmitted signals, f ( t )  and f2( t )J  and select- 1 
ing the transmitted signal which correlates best with z (t). 

B 

B 

For  the case where the binary character of the transmitted PCM 

signals is represented by two signal levels, e. g. , fl( t)  = +  S and f 2 ( t )  = - S, 
the bit-by-bit correlation detection is equivalent to filtering the received 

waveform with an aperture filter of aperture T 

the end of each bit-time. 

ing bit of the transmitted siqnal is assumed to have been + SJ and if the 

sample is l e s s  than zero the corresponding bit is assumed to  have been - S. 

and sampling i ts  output a t  B 
If the sample is greater  than zero the correspond- 

The .minimum bit-error probabilities can be obtained for random 

binary PCM using the waveforms f ( t )  and f ( t )  corresponding to idealized 

PCM/AM, PCMIPM and PCM/FM. 

of the c a r r i e r  occurring in one bit-time. 

100% modulated PCM/AM we have f , ( t)  = 

(S =average transmitted signal power). 

(if TB>> 2 d W c )  

1 2 
We assume that there a r e  many cycles 

That is TB' >> 2 a / u c .  For 

2 S sin ( LJ, t + (b) and f2(t)  = 0 

And from (1. 5)  and (1. 6) we get 2 

S 

@ = I s  
and o ( = o  

where B = l/T =bi t  rate B 



- 9 -  

and from (1.4) 

-P 

i, 2 -x / 2  
e dx 

The optimum value of phase deviation, 4) - +2# is 180 degrees since this 

gives the lowest possible value (i. e. - 1) for o< and consequently the lowest 

possible value for P 

of 180 degrees is called "phase-shift-keying" (PSK) and is exactly equivalent 

to suppressed c a r r i e r  PCM/AM. The minimum bit e r r o r  attainable for this 

Binary phase modulation with total phase deviation E' 

type of modulation is, f rom ( 1.4): 

(1.9) 

For  PCM/FM it is often erroneously presumed that a higher devi; 

ation ratio will  result  in a lower e r r o r  probability. 

usually based on the fact that the (filtered) video signal-to-noise ratio re-  

sulting from reception of PCM/FM by a receiver with conventional discrimi- 

nator can be either calculated o r  observed on an oscilloscope to be higher 

for higher deviation ratio, and hence the conclusion that the e r r o r  proba- 

bility should decrease fo r  higher de-riation ratio. 

clusion is, of course, due to  the implicit assumption that the video noise 

amplitude distribution i s  illdependent of deviation. 

in Appendix 111. ) 

This conclusion i s  

The invalidity of the cqn- 

(This is discussed further 

That the bi t -error  probability cannot be made arbi t rar i ly  sinal1 by 

any means other than ihcreasing the signal power (o r  decreasing system 

noise) is apparent from (1.4) since the minimum value for o( is - 1. Hence 
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the e r r o r  probability for  PCM/FM o r  any other binary PCM transmission 

system can never be less  than that f o r  PCM/PSK (o r  suppressed c a r r i e r  

PCM/AM) for which o< = - 1. 
attainable for  PCM/FM? 

What then is the minimum e r r o r  probability 

For this case we have 

and o( is a function of G)1, +1, and +2. PCM/FM is treated in 

Appendix I where i t  i s  found that for conventional PCM/FM, in which a 

single oscillator is frequency modulated by the PCM waveform, the optimum 

(minimum e r r o r  probability) deviation ratio, D (D = ratio of total deviation 

to bit ra te)  is 0.715. 

ratios determined experimentally (References 15 and 16) using conventional 

PCM/FM receiving equipment. 

previous heuristic considerations and experimental results,  deviation ratios 

in the vicinity of 0.7 have previously been recommended for PCM/FM. 

This i s  in very good agreement with optimum deviation 

It is also interesting to note that, due to 

From Appendix 

probability is: 

I equation ( I -4 ) ,  the corresponding bi t -error  

- 1 . 1 p  
r 3 

L 

dk 
-x /2 

e (1.10) 

opt 

The treatment in Appendix I derives bi t -error  probability for  PCM/FM 

directly in t e rms  of deviation ratio rather than using the parameter o< , 
since deviation ratio is a more familiar parameter. The value of o( for 

the above case is, however, 0. 21, which when substituted in (1.4) gives the 

same result. 

The minimum-error probability (corresponding to optimum devi- 

ation ratio) of (1. 10) is  plotted a s  a function of 

some experimentally measured results f rom References 15 and 16. The 

in Figure 2 along with 
1 P 

1 A fourth measured curve, using phase-lock loop and D =. 75, 
reported in Reference 15, crosses  the theoretical optimum curve 
and indicates about 1 db better than optimum at P = . E 
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theoretical and experimental results are seen to be in very good agreement, 

which indicates that if we do not make use of the a pr ior i  statistics of the 

data (i. e., i f  we assume no dependence between bits) we cannot devise de- 

modulaticn schemes for  PCM/FM which will reduce the bit-error proba- 

bility appreciably below that obtainable with conventional PCM/ FM receiving 

equipment with good synchronization. 

e r r o r  probabilities l e s s  than about ,05 since no experimental results were 

obtained for higher bit- e r r o r  pro babilitie s. 

This remark  applies only for bit- 

Some conclusions regarding PCM/FM and PCM/AM may be 

drawn f rom the analytical results. By comparison of equations (1.-8) and 

( 1  -10) we see that, f o r  a given noise spectrum and bit rate, PCMIAM re- 

quires 0.8 db more  power to accomplish a given bi t -error  probability than 

does PCM/ FM (both using "optimum" demodulation). 

of equations (1. 10) and (1.9) we see that PCM/FM requires 2. 2 db more 

power than PCM/PSK (or  suppressed c a r r i e r  PCM/AM) for the same bit- 

error probability. 

Also, by comparison 

For l'switched PCM/FM, ' I  i. e. PCM/FM resulting from non- 

synchronous switching between two oscillators of frequencies c3 
we note from Appendix I that the lowest e r r o r  probability is obtained with 

and d2, 1 

a, - CJ, = 2 7 ~  n B where n is any integer. And, f rom equation (I- l l) ,  

Hence the resulting bi t -error  probability is the same as for  PCMJAM. 

"switched PCM/FMtt requires 0 .8  db more  power to accomplish a given bit- 

e r r o r  probability than doe s conventional PCM/ FM. 

But the most important conclusion concerning further research in 

improved PCM/FM demodulation i s  that, in view of the excellent comparison 

between the experimental and theoretically optimum results of Figure 2, if 

we do not make use of data statistics in the demodulation process we cannot 

devise demodulation schemes f o r  obtaining bi t -error  probabilities less than 

. 05 with significantly less  transmitted power than that required by con- 

ventional PCM/ FM receiving equipment with good synchronization. 
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Similar results and conclusions could surely be obtained for  

PCM/AM and PCM/PSK. 

cause of availability of measured results f rom independent laboratories 

and because most of the existing PCM telemetry systems utilize PCM/FM. 

The gains available by use of a pr ior i  data statistics in  demodulation of 

binary PCM signals are investigated in the following chapters. 

But PCM/FM has been emphasized here  be- 



ChaDter 2 

MINIMUM-ERROR DEMODULATION O F  BINARY PCM WAVEFORMS 

WITH DEPENDENCE BETWEEN DATA SAMPLES 

The notation used here i s  again that of Figure 1. The x(t), y(t) ,  

and z( t )  symbols represent signals existing over a time interval, T, a t  a 

data source (transducer) output, transmitter output, and receiver input 

respectively. 

of our results to multiple data sources wil l  be apparent. 

signal, y(t), is the ser ia l  binary PCM code waveform representing the 

amplitudes of successive samples of the data, x(t). 

z(t), i s  the sum of y(t) and channel noise, n(t). 

For  simplicity we t rea t  a single data source. The extension 

The transmitted 

The received signal, 

In Chapter 1, it w a s  assumed that y(t) during any bit interval was 

But in many cases  there independent of y(t) during any other bit interval. 

may be, for example, considerable statistical dependence between words 

( o r  coded samples of data) one o r  more frames apart. 

probability distribution of the "possible" PCM signals over the interval T 

is not constant as assumed in Chapter 1, but is higher for waveforms which 

exhibit this "periodic dependence" than for waveforms which do not. Hence 

the optimum demodulator derived for completely random PCM waveforms 

is not necessarily optimum for these more realistic waveforms, and con- 

siderable improvement i n  sensitivity might be gained by taking advantage 

of this statistical dependence. 

In this case,  the 

F o r  data power spectra which extend from zero  frequency to  some 

finite frequency, 

can sample the data a t  2f 

interpolation e r ro r .  

the spectrum amplitude is constant f rom zero frequency to f 

idealized data spectrum whose amplitude decreases l e s s  abruptly for higher 

frequencies (e. g., inversely proportional to some power of the frequency) 

, and a r e  zero for a l l  higher frequencies we theoretically 

samples per second and recover i t  with zero  
f I  

I 
The data samples in this case wi l l  be uncorrelated if 

But f o r  a non- I' 

- 14 - 



- 15 - 

any finite sample rate  results in a non-zero interpolation e r r o r  and, in 

general, a non-zero correlation between samples. 

The types of non-ideal power spectra most realist ic and useful 

for representing data spectra a r e  not known since the determination of 

typical data spectra has received little attention in the past. But if for 

purposes of illustration, and for maintaining simplicity, (and since some 

results a r e  available in Reference 8 for this case)  we assume a 3rd order  

Butterworth spectrum, S(f) = --- that is, the spectrum k 

'+J 
produced by passing white noise through a 3rd order ,  low-pass Butterworth 

fi l ter  (the ideal data mentioned above i s  of "infinite order") --- we find that 

i f  we sample it rapidly enough"9o that we can interpolate with 1% r m s  in- 

terpolation e r r o r  we have a correlation coefficient of 0. 905 between ad- 

jacent samples. This is determined as follows: 

If we interpolate the samples of 3rd order  Butterworth data with 

a Wiener optimum (minimum rms  e r r o r )  interpolation fi l ter ,  the sampling 

rate , f  , must be approximately ten times the break frequency, f , of the 
S I 

data spectrum if  the r m s  interpolation e r r o r  is to be one percent ( see  

Figure 5, P a r t  1 of Reference 8). 

for 3rd order  Butterworth data i s  ( see  Table 3, P a r t  2, of Reference 8): 

The normalized autocorrelation function 

andfo r  r t ' = T  = l / f  = 2 r / U s  we get 
S S 

similarly we find 

p ( 2 T  ) =.677 
S 

p ( 3 T  ) =.403 
S 

etc. 
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Although little is known about the spectral  characterist ics of 

typical measured o r  telemetered data, the possibility of such high corre-  

lation between data samples raises the prospect of making use of this 

correlation in the demodulation of telemetered data. If the correlation 

coefficient between two samples were unity (i. e. , the probability of the two 

samples being identical is one), and if we used the finite-time-correlation 

demodulation techniques of Chapter 1 (see equation ( 1.7)  and the paragraph 

following it) we could, by using both samples, obtain a specified e r r o r  proba- 

bility with half the signal power required by using only one sample. 

is due to the fact  that when two noisy identical signals (noises uncorrelated, 

This - - 

but f rom same random process) a r e  operated on by identical finite time 

correlators  whose outputs a r e  summed, the signal component of the sum is 

twice that of either correlator,  but the r m s  value of the noise component of 

the sum is only 

signal amplitude to r m s  noise for the sum will be 

for a single corEelator. 

- one sample with twice the signal power, a power gain of 3 db i s  made possi- 

ble by using two data samples with unity correlation coefficient. 

investigate the power gains made possible by correlation coefficients l e s s  

than unity between data samples. 

times that of either correlator.  Hence the ratio of 

times greater than 

Since the same result would be obtained by using 

We now 

The difficulty in deriving a maximum-likelihood demodulator for 

PCM considering data statistics is a consequence of the difficulty in analyti- 

cally relating the statistics of the modulated signals that a r e  transmitted 

with the statistics of the data (assumed known). 

these statistics is due to the fact that a PCM signal is not a continuous 

function of the modulating (data) signal. 

likelihood demodulator for PCM, i t  i s  more convenient to consider the 

maximum-likelihood receiver to be that which determines the most likely 

PCM signal rather than the most likely data signal. This is a reasonable 

approach since there is a unique (though non-analytic) correspondence be- 

tween a PCM signal and the data samples which it represents. 

The difficulty in relating 

Hence, f o r  deriving a maximum- 

That is, 
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the coding and modulation operations a r e  deterministic and reversible. 

Hence, determining the most likely PCM signal is equivalent to determining 

the most likely sequence of quantized data samples, and the interpolation of 

the sample values need not be considered a s  par t  of the demodulation process 

( see  Figure 1). 

might make use of a pr ior i  data statist ics such as autocorrelation of the 

data ( o r  correlation between data samples) in the demodulation process. 

appears that we must somehow be able to make use of the PCM signal sta- 

t ist ics resulting from these data statistics. 

However, with this approach it is not a t  all c lear  how one 

It 

For the case treated in Chapter 1, minimum-error demodulation 

has been regarded as the process of deciding which of all possible signals 

extending over some time interval, T, is most likely to have been t rans-  

mitted, given a received signal with independent, additive, band-limited 

white gaussian noise. This requires signal probability distributions for 

entire signals (elements of a random process ensemble). 

signal space is very convenient for envisioning entire signals as the elements 

of a probability distribution. 

distributions cannot always be obtained. For  a gaussian random process,  

such expressions may be obtained a s  in Reference 11, but PCM signals do 

not represent a gaussian random process; and although the modulating data 

signals might be assumed to come from a gaussian random process,  the 

treatment of Reference 11 places requirements on the modulation operator 

which are not satisfied by P C M  as pointed out in Reference 11. 

consider each transmitted y-waveform extending over time interval T to 

The concept of 

But useful mathematical expressions for such 

But if we 

- - -  ’ Yn, and each received 1’ Y2’ be a sequence of binary PCM words, y 

z-waveform to be a sequence of noisy binary PCM words, Z1’ Z2’ - - -  Y Z I  n 
then the inverse probability distribution of the transmitted waveforms may 

be written: 

r ( z l ,  - - -  Y zn I y l ,  - - -  Y Y n k ( Y I Y  - - -  2 Yn)  
q(yl. ---, yn I Z l ’  - - -  YZ ) =  

n s (z l ,  - - -  Ye n 
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) a r e  probability distri-  

* 'n l J - - - J y n  I where q(y - - -  z ) and g(ylJ - - -  
1' n 

J z  ) ) a n d  s ( z  - - -  
The remarks made 

1' n 
butions of the y-waveforms, and r(z  --- J zn I Y1' - - - I  Yn 1' 
a r e  probability density functions of the z-waveforms. 

on page 4 regarding the interpretation of probability density functions for 

waveforms applies to the above probability density functions. 

) of the 
1' 'n 

Since the a prior i  joint probability distribution g(y 

word waveforms y lJ  

distribution f (Y  

Y I J  - - - a  Y n 
r ( z l ,  - - - , e  

h(n), of the additive, independent, band-limited white gaussian noise, we 

could evaluate g(y 11 - " - J  yn I Z1' - - -  a z ) for each posaible s e t  of y . ' s  with a 

given se t  of z . ' ~ ,  and choose the se t  of y , ' ~  which gives the greatest  value. 

But this process would not necessarily yield the lowest possible word e r r o r  

probability since the most probable sequence of words is not necessarily the 

sequence of most probable words in each word-position. If we wish to mini- 

mize word e r r o r  probability we should choose the most probable word in 

each word-position (o r  "frame"). 

yn is equivalent to the a pr ior i  joint probability 

---' Y ) of the corresponding quantized data samples 1' n 
, Y ) to be known), and since 1' --- n (we assume f ( Y  

I y18 ---, yn) could be obtained from the assumed distribution, 

n 1 

1 1 

Let US assume that we have stored n frames of received signal, 

and let  y.  be the signal (word) transmitted in the ith frame and z .  the re- 

ceived signal ir, the i We wish to make a maximum probability 

estimate of y, ,  knowing z --- That is we wish to choose the 

y. waveform which maximizes p(y 

P(yj I 8 l J - O -  n 
q(y1 J --- 'y, 1 z l J - - -  , z ) over all y. except y.: 

1 
th 1 

frame. 

J 1' z * '  J - - -  n' 
). We may obtain I z l ' - - -  'n J 

, z ) by summing the joint probability distribution 

n 1 J 
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where U =the  se t  of all possible transmitted PCM waveforms during one 

word-time, 

The y. 's and z ' s  now represent waveforms of duration T 

TW' 

W' 1 i 

If the noise is independent of the transmitted signal y then: 

If the noise is also independent from frame to frame: 

) =h(z -y1) - - -  h(z - yn) (2. 2) r ( z l ,  - - -  , zn I Y1' - - - 9  Yn 1 n 

Here h is  used to represent both joint and marginal distribution for  the noise 

random process. Then: 

, Z  ) =K5(z)  - - -  - - -  ~ ( Z ~ - Y ~ ) ~ ( Z ~ - Y ~ ) - - -  
E U  y n E U  YIE u Y j - l "  u Yj+l 

n P(Yj 1 Z l '  - - -  

and is independent of y . 1 
where K (z) = - 

5 d'(Zl ,  - - -  3 2  n 1 j 
) is equivalent to f ( Y  - - -  , Y ), equation (2.3) Since g(yl, ---, yn 1' n 

expresses p(y. I z - - -  , z ) in terms of known functions of the received z ' s  

and all  possible combinations of transmitted y's. Therefore, in principle 

the problem of computing p(y. I z 
solved. .However, in practice the problem still appears quite formidable 

because of the number of operations required for  the computation with a 

reasonable number, my of bits per word and a reasonable number, n, of 

received words to be considered. 

multiple summation involves more than sixteen million te rms  for each 

possible y. waveform, of which there a r e  2m; and the complete computation 

must be made f o r  each word to be demodulated. Hence i t  appears that the 

only feasible method for making the computations i s  by use  of a high speed 

digital computer. 

J 1' n 

, z ) fo r  any specified z - - -  ,z i s  --- 
J 1' n 1' n 

For  example, if m = 6 and n = 5 the 

J 
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The significance of equation (2. 3 )  l ies in the fact that if  th.e esti-  

mated y. is that which maximizes (2. 3),  the probability of being wrong (i. e . ,  

probability of e r r o r )  is the lowest obtainable by any method of estimation 

which makes use of only the n received words, z - - -  , z . If we can calcu- 

late this e r r o r  probability as a function of signal-to-noise power ratio for  

any assumed n and data statistics we have calculated the lowest possible 

e r r o r  probability attainable for the assumed conditions. No explicit ex- 

pression for  this e r r o r  probability has been obtained. Consequently calcu- 

lation of the e r r o r  probability must be accomplished by a model-sampling 

o r  l'monte-carlor' technique, which in i t s  simplest form would consist of 

selecting se t s  of z ' s  (noisy waveforms) from the proper distribution and 

operating on them as indicated by equation ( 2 .  3)  to select  the y. which maxi- 

mizes  (2. 3). 

e r r o r s  a r e  made in selecting y , until an  estimate can be made, with reason- 

able confidence, of the average e r r o r  rate o r  e r r o r  probability. The means 

for implementing this operation in a high speed digital computer must now 

be considered. 

J 

1' n 

J 
This must be repeated, observing the frequency with which 

j 



Chapter 3 

SIMULATION O F  MINIMUM- ERROR DEMODULATION 

WITH A DIGITAL COMPUTER 

L 

The expression (2. 3)  has a numerical (probability) value for  any 

set of waveforms y . , z  

values we must first be able to determine numerical values for  the factors 

of the form h(z.-y.) for  any waveforms 2 and y . 
i i 

values of the noise probability density function, h(n), f o r  n =z . -y  . i i  
sume the noise waveform to be a band-limited white gaussian waveform of 

duration T 

- - -  , z . 
3 1' n 

In order  to determine these numerical 

These factors a r e  the 
1 1  

W e  as- 

in which case it can be shown that (see Reference 14): 
W' 

2 
where K is the one sided spectral height of the noise and K is a constant. 6 

As in Chapter 1, the term "band-limited white'' here  means that 
the power spectrum is of uniform height, K 2 , from zero  frequency to some 

arbi t rar i ly  large but finite frequency, W, and of zero  height for all higher 

f requencie s. 

The integration in ( 3 .  1) is over the i th word-time. This equation 

can be reduced to: 

h(zi-yi) =F(E , E  ) exp 
i Y i  Z 

2 
where E = z dt 

2 i i 

E 
Y i  J 

TW 

1 
yi"dt 

(3 .  2) 

- 21 - 
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F o r  symmetrical P C M  waveforms, E is the same for all  y.E U. 
1 'i 

Y Z  1 j I z ly  --- n 
Since the z . ' s  are all given and a r e  unchanged for  calculating p(y 

1 

for any y. E U, the E ' s  are also unchanged. Hence F(E , E ) may be con- 

sidered a constant and, for  purposes of maximizing p(y. I 
respect to y , equation ( 3 . 2 )  may be written: 

J z i z i  Y i  

- - -  ,z ) with 
J z ly  n 

j 

W I 

The multiple summation of equation (2. 3)  is taken over all y ,  E U, 
I m 

y 2 E U ,  etc. for  all y. except y 

waveforms f o r  each y . 
i 

For  m-bit words there a r e  2 

That is ,  the set  U is made up of 2 

possible 
j' m 1 

different PCM 

waveforms. 

there a r e  l e s s  than 2 Each of these 

waveforms will be distinguished in our y-notation by a second subscript. 

F o r  example the p 

waveforms, . . (The most obvious "ordered arrangement" for ordi- 

nary binary PCM waveforms is in the numerical order  of their  binary 

(The results a r e  easily extendable to redundant codes in which 
m 

possible transmitted waveforms). 

th 

lS Yi(p) 

waveform, f rom some ordered arrangement of the 

number representation. ) Using this more explicit notation, the above e-  

quation becomes: 

Furthermore,  the value of the f i r s t  bit of y 

'i(p) 1 
is: 

will be represented by 
i(P) 

etc. Then the exponential in equation (3 .  3)  
i(P)2' 

the second bit by y 

th th 
where the integration of the r t e r m  of the summation is taken over the r 

bit-time (of duration T ). We assume here  that the bandwidth, W, of the B 

L 
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B' band-limited white noise is large compared to 1 / T  

.- 

Let the binary character of the transmitted PCM signals be 
1 

represented during each bit-time by either of two known waveforms , . 
g,(t) and g2(t) (e. g. ,  g,(t) representing "yes" bits and g ( t )  representing 

"nof1 bits). 1 2 
have already made that assumption implicitly by assuming that E 

same for all y. € U. 

2 
We must require g ( t )  and g ( t )  to have equal energies since we 

is the 
Y i  

1 

That is, we must require that 

B 

=average transmitted signal power. 
2 

where S ( W e  will la ter  extend our 

results to include any two waveforms f ( t )  and f ( t )  without the equal energy 

requirement - see Chapter 5.) 
1 2 

The finite-time correlation coefficient for  g ( t )  and g (t) is: 1 2 

It can have any value from - 1 to + I .  

Let n ( t)  be the noise waveform during the rth bit time. That is, 
r 

n ( t )  is the noisz waveform which is added to the transmitted signal, y 

to give the received signal z 

integral 

r i( s) 1: 
during the rth bit time. Now consider the 

ir 

B 1 

where y ( t )  is  either g ( t )  or g ( t )  
i(p)r 1 2 

1 In the treatrnent following it is assumed that the pair  of waveforms, 
g,(t) and g,(t), i s  known for each bit-time independently of the wave- 
form existing during any other bit- t ine.  This assumption does not 
include PCA4/FM with non-integer deviation ral;io (see f i rs t  para- 
graph of Appendix I). 
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Since n ( t )  is a sample waveform from a band-limited white 
r 

stationary random gaussian process of zero mean and two-sided spectral 

height K /2,  N 

square value 

2 is  a random gaussian variable of zero mean and mean 
r 

where R (t  - tz) = n  (t  )n ( t  ) = 
n l  r 1  r 2  

(x is used here to indicate the ensemble average, or expected value, of x. ) 

The refore: - 
2 2 2 g(t) dt = - 

K2 r 
2s2 

g K‘B 
E =  

‘B 

For  a specific n ( t )  waver’zrm, N will  have one 
r r 

and (in general) another value, N for y ( t )  = g (t). Nr l  and N a r e  
r 2’ i ( P b  2- r 2  

random gaussian variables of zero mean, variance 

coefficient PN where: 

N , and correlation r 

4 N N  - - r l  r 2  - 
2 K4 7 P N  = 

r r 
N 

K4 N 2 
r 

B T TB 
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Returning now to equation (3. 4 ) J  i f  y 

the i word-time the r 

is the transmitted waveform during 
i(s) th th term of the summation of (3.4) is 

r 
tN 

r 

where: N r = N  r l  if .y i (p)r  = g , w  

fo,r dw-gmatched ck&s 

N = N r 2  if y = g$) (e. g. , a "not1 bit) 
r i(p)r " 

Now the actual minimum-error .demodulator, having available 

only the reccived noisy waveforms, z would.de.tg,x.mine the h(zi-Y 
i' i(P) 

values by correlating the received z 's wioSl.eac;F mp,pible transmitted 

waveform, y 

But for purposes of simulating the operation in a digital computer (e. g. , 
for  a monte carlo method) where w e , w t  manipulate digital quantities 

rather than waveforms, the tranamitted signals (y's) must be generated by 

the computer and therefore i t  ha8 ttke ,information needed to determine for 

any assumed waveform, y , the bitg.wbich "matchtt the actual transmitted 
.i 

waveform, y , and,thorSW3 which aqe "unmatched. I '  Therefore the computer 

can calculate .&e!b(zi-y ) values of equation (3. 3) by use of (3.4) and (3.7). 

Hence the onlytltse that the computer need make of the noise portion of the 

i 
and then exponentiating the :results,gs indicated in (3. 3). 

i(P)' 

i( 4 
. i{P, 
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received signal 

N are simply 

and correlation 
r 2  

waveform is to determine N and N Since N and 

two correlated random gaussian variates with variance 

coefficient determined by S and 3\ , we can, fo r  

r l  r 2' r l  

2 

K'B 

computer simulation purposes, select N and N 
r l  r 2  directly from the proper 

2-dimensional gaussian distribution and use them in (3 .  7). 

Note that the only characteristics of the waveforms g ( t )  and 
1 2 

g,(t) used in this operatior. a r e  the mean square value, S , (assumed the 

same for both waveformsj and the finite-time correlation coefficient, 3\ . 
Hence results obtained fo r  any pair of waveforms apply directly to any other 

pair  (with equal energies) having the same 3\ . 
The basic general computer procedure then for generating sets of 

2 ' s  and evaluating the factors  of the form h(z.-y 

lation is to first select  n data samples having the appropriate correlation 

between samples, code these samples in m-bit binary code and store these. 

For each code bit, select two random numbers, Nr l  and N 

dimensional gaussian distribution with variance 2 and correlation co- 

) for a sample calcu- 
1 i(p) 

f rom a two- 
r 2' 

2s 

K'B 
efficient 

h(zi-yi(p)) by use of (3.7), (3.4), and ( 3 .  3). 

(determined from the assumed g ( t )  and g (t)). Evaluate each 
1 2 

The reqaired calculation procedure i s  made c learer  i f  we discuss 

i t  in te rms  of specific waveforms for  g ( t )  and g (t). 

waveforms of equal energy a r e  g ( t )  = +  S and g,(t) = - S illustrated in 

Figure 3. For  these waveforms 3\ = - 1, and therefore N 

facilitates the generation of bit-noise in the computer and therefore the 

computer calculations were carried out for these particular waveforms. 

mentioned above, the results apply directly to any equal-energy waveforms 

having the s a m e h  . 
plied to any waveforms whatever. 

paragraphs for  these specific simple waveforms is slightly different from the 

The simplest possible 
1 2 

1 
= - N 

r l  r 2' 
This 

As 

W e  wi l l  see la ter  that the results can easily be ap- 

The procedure discussed in the following 
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c 

+S 

0 

-s 

Figure 3 Typical Waveforms 
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c 

general procedure outlined in the above paragraph since it is not necessary 

to use equation (3.7) in this simple case. Equation (3.4) can be used as 

follow s. 

Consider the waveforms shown in Figure 3. 

yi(p) is the (solid-line) symmetrical PCM waveform 

e is the (solid-line) noisy waveform i 

The dotted lines zepresent the average values of z .  over individual 
1 

bit-times and this average value over the rth bit time is  designated by ir' 
Equation (3.4) may now be written: 

..- m m 
2TB - 

K2 J eiYi(pdt = K' r 2 Yi(p)r Z i r  ( 3 . 8 )  

2 - - 
TW 

Note that y 

Therefore, since z .  is some y. to which band-limited white gaussian 

can be either t S or  - S, but can have no other 
i ( p b  

values. 

noise of one-sided spectral height K has been added: 
1 2 1 

- 
z =f S t the average over one bit-time, TB, of some band-limited 
ir 

white gaussian noise of zero mean and of spectral  height K 2 

= f  S tN. 
ir 

where,N is ,a sample of a random gaussian variable of zero mean, and 
is 

variance 
- K2 

2TB 
- 

as a normalized; : ,f ir ir We now define 

- 
* s  

- + Vir ( 3 . 9 )  - Nir ' 2  * t s  
f i r  - K K K 

t ir - - -  - 
K - 

JZTg' JZTB' JLTB' 
is a sample of a random gaussian variable of zero 

mean and unity variance. 
Ni r where 

These samples may be as- v = -  K - ir 

JZTg' sumed independent from one bit-time to another since 

B' the bandwidth, W, of the white noise is assumed large compared to 1/T 
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If we define normalized PCM waveforms: 

Then: 

Equation ( 3 . 8 )  becomes: 
m 

Equation (3 .  3) then becomes: 

( 3 . 1 0 )  

( 3 . 1 1 )  

Al l  of the factors of equation (2. 3)  a r e  of this form except for  the 

factor g(y,, ---, yn) which is the joint probability distribution of the PCM 
waveforms y - - -  . But each waveform, y , is a (binary) representation 1' "n i 
of a particular quantized data value o r  sample, Y., and each se t  of waveforms, 

y l ,  ---, yn, represents a corresponding se t  of quantized data samples 

Y1, - - -  , Y . 
n 

waveforms is the same a s  the probability of occurrence of the corresponding 

set of quantized data samples. Hence the joint probability distribution, 

g( y , - - - , yn), of the waveforms can be replaced by the joint probability 

distribution, f(  Y 1, - - - , Y ), of the corresponding quantized data samples. 

1 

Therefore, the probability of occurrence of a particular s e t  of 

n 

For  any given set  of z ' s ,  equation (2. 3) m a y  be evaluated f o r  each 

etc. o r ,  in general, f o r  y Using equation 
j(p)' 

y. waveform, y 

(3 .  12) and replacing g(y , - --, yn ) by f ( Y 1 ,  ---, Y ) we may express  the r ight  
1 n 

hand side of equation (2. 3) in terms of numbers ra ther  than waveforms so 

that a purely numerical evaluation is possible: 

J j(1)"j(2)' - - -  



- 30 - 

(3. 13) 

where V is the set of all  possible normalized PCM word waveforms. 

It may be noted again that the first subscript, 1, 2, - - -  , j ,  etc. 

re fe rs  to the word-time-slot; the subscript in parenthesis, (p), (q), ---, 

re fers  to the particular m-bit PCM waveform; and the other subscript, r, 

re fers  to the bit- time- slot. 

Since evaluation of (3.13) involves well defined manipulations of 

numbers, we may simulate the operation with a digital computer. 



Chapter 4 

PROCEDURES FOR 

COMPUTATION O F  ERROR PROBABILITIES 

The computer simulation of minimum-error demodulation w i l l  

produce the same average error rate,  o r  average e r r o r  probability, as 

would an actual minimum-error demodulator provided the se t s  of z ' s  used 

by the computer a r e  representative of those which the actual device would 

operate upon. We can satisfy this requirement by selecting the z ' s  f rom 

the proper z distribution, a process sometimes called "model sampling. 

Since each z i s  formed by the addition of a PCM waveform, y, and a noise 

waveform, n, we may insure that the z ' s  a r e  from the proper distribution 

by selecting the y ' s  and n ' s  from the proper distributions. 

bility distribution g(y,, ---, yn) of a set  of y ' s  i s ,  a s  previously discussed, 

uniquely determined by the equivalent distribution f( Y 

quantized data samples. 

waveforms is h(n), but in Chapter 3 we found that we do not need to make 

use of the complete noise waveforms in our calculations. 

of N 

in Chapter 3 that these average values a r e  simply random numbers selected 

The proba- 

- - - , Y ) of the 
1' n 

The probability density function of the noise 

We make use only 

' s ,  the average values of the noise over one bit-time, TB- We found 
ir 

f rom a gaussian distribution of variance - K2 . Hence we may, for - -  
2TB 

purposes of these calculations, generate sets  of z ' s  f rom the proper distri-  

bution by selecting a se t  of Y's from the proper joint distribution, code 

these in binary PCM code of amplitude f S , and add to the ampli- 

K JB/2' 
tude of each bit of the codes constant, independent values (i. e. , the -r/ ' s  

of equation ( 3 . 9 )  ) selected from a gaussian distribution of zero  mean and 

unity variance. 

(3 .  13). We shall henceforth refer to the ratio S simply as the 

"signal-to-noise ratio, S/N. K W  

The resulting numbers a r e  the J 's required in equation 

- 31 - 
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We assume the data to be from a gaussian random process with 

specified power spectrum ( o r  autocorrelation function), mean m and 

variance fl . 
bility density function of the data amplitude does not change appreciably 

over the quantization intervals, then for calculation of the joint probabilities 

of data samples we may use the data value at  the center of a quantization 

interval for  any data sample falling in that interval (see Figure 4). 

m-bit binary code can represent only 2 

intervals. 

by such a code. 

chosen to be 5. 2 5 ( o r  m 

curring outside this amplitude range is less  than 1%. When data samples 

outside this range do occur they a r e  coded as "zero" ( i f  below this range) 

o r  "full scale" ( i f  above this range). 

2 Y 
If the data quantization intervals a r e  such that the proba- 

Y 

But an 
m distinct levels o r  quantization 

Hence only a finite range of data amplitude can be represented 

In Figure 4 (shown for m = 6)  this finite range has been 

*2.6 fl ), The probability of the data oc- 
Y Y Y 

The joint probability distribution, 

Y ) of quantized data samples Y - - -  , Y is then essentially an 
1' n 

f(  YID - - -  
n CL 

LL1 
n order  gaussian distribution with correlation coefficients phi equal to 

the values of the normalized autocorrelation function of the data, p (  rhi), 
where Thi is the time between samples Y and Y - h i' 

/ n n 

lplk; (Yh-m )(Yi-m 
1 (- - 3 1  1 Y 

, Y  ) = K  exp 
9 

f( Y1' - - -  n 

exP(- 1 
= K1O 

Y-m 
Y where X = 

I p[ = determinant of correlation matrixD 

f hi of Ir I = cofactor of element 1 Plhi 
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The generation of independent gaussian numbers i s  not difficult. 

One way in which such numbers may be generated in a digital computer is 

by first generating groups of random numbers ( say  M numbers in each group) 

uniformly distributed between zero and unity, and then adding the numbers in 

each group. 

practical purposes, random independent gaussian variates of mean M/ 2 and 

variance M . But we want Y's which a r e  dependent (or  correlated) 

gaussian variates with correlation matrix [p I .  We may, however, 

generate n independent variates and then transform them into n correlated 

variates with correlation matrix [ p ]  as follows: 

If M is f a i r ly  large ( say  10 o r  more) these sums are ,  for 

- 
12 

Let u , u ---, u be uncorrelated gaussian variates,  with zero 
1 2  n 

mean and unity variance which w e  wish to transform into correlated gaussian 

---, Y with zero mean and unity variance and with the speci- 
1' *2' n variates Y 

fied correlation matrix: 

I1 

Pzn 
- - - - -  I II P 2 1  
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[ U] is column matrix with elements u , u 

[Y] is column matrix with elements Y 1’ Y2¶ - - -  , Y  

- - -  ¶ U  
1 2’ n 

n 

We now have all the formulations and assumptions necessary to  

make e r r o r  probability calculations with a digital computer using the model- 

sampling (or  monte-carlo) technique. 

c reases  very rapidly a s  m and n get large. 

however, about the gains available by use of data correlation from consider- 

ation of the gain for n = 2 - -  that is, we examine 2 received (correlated) 

words in estimating the transmitted waveform for one of them. 

But the computing time required in- 

We can learn a great deal, 

The cases  

investigated for this report are m = 6 and 3, n = 1 and 2. 

the time required by an IBM 7090 for each simulated demodulation is ap- 

proximately 0. 007 minute. 

mation, (4. l),  becomes (see Appendix IV): 

For  m = 6 and n = 2 

F o r  this case the data correlation transfor- 

U 
2 

- 
y1 - (4. 2a) 

Y =  2 U 2 (4. 2b) 

and equation (3. 13 ) becomes: 

A simple model-sampling estimation of e r r o r  probability would 

be to note, for each simulated demodulation, whether o r  not an e r r o r  was 

made and take the ratio of total e r r o r s  to total demodulations as an esti-  

. mate of the word-error probability, For  this simple technique we 
pW 
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can calculate, for any desired confidence level, the number of total de- 

modulations required (and hence the computation time) a s  follows. 

sider a random variable, U, which has a value of unity when a demodulation 

results in an e r r o r ,  and a value of zero  when no e r r o r  i s  made. 

(expected) value of U is then the word-error  probability, P 

to estimate. 

Con- 

The mean 

which we wish 

l e u  i i = 1  L 

W' 
For  L demodulations the random variable 

- P1 - - 

But P has a binomial distribution of mean P and 

= iPw( 1 - P  )/L. ' The 9570 confidence interval is 

w' 1 W 
is our estimate of P 

standard deviation @ w p1 

( for  reasonably large N)  approximately f 2 . So if we require 9570 con- 
p1 

fidence that P is within 57" of P 
1 W 

we must have 2 Cp /Pw = 0. 05. There- 

= 0. 1 ( for  example) we get L = 14,400 requiring (14,400)(0. 007) '? 

1 

fore for P 

100 minutes of computing time on the 7090 for  each combination of data 

correlation coefficient and signal-to-noise ratio. 

L = 3,700. 

reasonable total computation time on the 7090 (say around one hour). To 

W accomplish this we must modify our technique so that our estimate of P 

requires fewer simulated demodulations (i. e. , fewer "samples") in order 

to converge to P 

W 

For  P =O. 3 we find that w 
We need to reduce these by a factor of twenty o r  thirty for a 

with reasonable confidence. W 

One such modification of ou r  technique would be to find a better 

used above. Such a p1 , statistic for  estimating P 

statistic must have an expected value (or  mean) equal to P and, in order  

to be !'better' ' f o r  our purposes, i ts  variance about this mean must be ac-  

ceptably low with fewer samples (simulated demodulations) than required for 

P1. 

than the estimate, 
W 

W 

Such an estimate can be obtained a s  follows. 
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To accomplish each simulated demodulation we calculate, from 

) fo r  each of the 2m possible 2(p) I zl' z 2  equation (3 .  13), the value of p(y 

y waveforms and choose the y corresponding to the largest  value of 2 2 

M' Let this largest value be p Then p is the probability 
M 

that we have chosen, for the particular se t  of z ' s  used in that simulated de- 

modulation, the cor rec t  y 

z's, that we will choose the wrong y 

Therefore if we choose our sets of z ' s  from the proper distribution (which 

we shall do), Q is an unbiased estimate of P 
- W' 

Then Q = l-pM is the probability, for that set  of 2' 
- -  that i s ,  that we wi l l  make an e r ro r .  2 

and hence so i s  

p = -  Q. where L i s  the number of samples, o r  simulated de- 
i = l  2 L 

modulations, used in the estimate. 

must  be either zero  or  unity while the te rms  in the summation of P may 

have any values f rom zero  to unity, we might expect that P 

mator of P than is P This turns out to be true. For  P = 0. 3, P 

gives a good estimate of P with L =300. 

responding to signal-to-noise ratio of about 2 o r  greater) ,  the number of 

samples required is undesirably high and we must seek further means of 

modifying our model sampling technique s o  that fewer samples a r e  required. 

Since the t e rms  in the summation of P 
1 

2 
is a better esti-  

2 

W 1' W 2 
But for P of 0. 1 o r  l e s s  (cor-  w W 

A method, applicable to our problem, for modifying the model 

sampling ( o r  monte carlo) technique so that fewer samples may be required 

has been suggested by Kahn and Marshall (see Reference 5). 

of this method (which is called "importance sampling'') is as follows. 

sider the random variable Q = 1-pM defined above. The randomness of Q 

derives f rom two sources: the randomness of the transmitted data values, 

Y, and the randomness of the noise, N. The amplitude of the noise is a s -  

sumed gaussianly distributed as discussed ear l ier .  Now consider P a s  

the expected value of Q: 

The philosophy 

Con- 

W 

pW = JJ Q( Y, N)p( Y, N)dYdN (4.4) 

where p(Y, N)  is the joint probability distribution of Y and N. 
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Our estimate, P2, of P is W 

2 Q(Y.,N.) 
1 1  

P2 = - 
L i = 1  

(4.5) 

where the Q ' e  are calculated using Y . ' s  and N. ' s  selected from the distri-  

bution p( Y, N). 
1 1 

If the integrand of (4.4) is multiplied and divided by some arbi t rary 
* probability distribution, p ( Y ,  N), it becomes: 

pw - -/i (Q( Y, N) p(y' pTY, N, N)  p' ( Y ,  N)  dYdN (4 .6 )  

So i f  we now select Y . ' s  and N.'s from the "modified" distribution, p* (Y ,N) ,  

( ra ther  than from p(Y, N)), an unbiased estimate of P 
1 1 

is W 

That is, we calculate the Q ' s  as before but now we "weight" them by 

P(Y,,  N,) 
1 1  before summing them. As pointed out by Kahn and Marshall, 

p * ( Y , N )  can be selected such that the variance of P 

of P and consequently the sample size, L, can be smaller for P than for 

is  l ess  than the variance 3 

2 3 
In fact, p* (Y,  N)  can theoretically be selected such that the variance of 

This can be seen by noting that 
p2' 
P 

if p*(Y, N) is selected such that 

is zero thus permitting us t o  take L = 1. 
3 

equation (4. 7 )  would become 
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= P  for  any L. p = -  
3 L W 

i = l  

Of course we cannot determine this optimum p*(Y, N) since i t ' s  

determination requires us to know the very thing we a r e  trying to estimate. 

But knowing that such a p ( Y , N )  exists encourages us  to attempt to find, by 

intuition o r  good luck, a p* (Y,  N) close enough to the optimum so that the 

variance of P is l e s s  than that of P 

satisfactory convergence to P 

follows. 

* 

and hence requires fewer samples for 
3 2' 

We may accomplish this in this case as W' 

Since Y and N a r e  independent we may write p (Y ,  N) a s  r ( Y )  h(N). 

We may reason intuitively that since changes i n  the variance of our esti-  

mate P result  primarily from changes in the r m s  value of the noise, that 

the variance is largely due to the randomness resulting from N rather than 

Y. Therefore the difference between the original distribution, p (Y ,  N), 

and the optimum Ifmodifiedft distribution, p* (Y,  N), should be largely due to 

modification of h(N) rather than r ( Y ) .  

of the form p* ( Y ,  N)  = r( Y)  hqN). 

(4.7) become: 

2 

Hence we res t r ic t  our p*(Y, N) to be 

With this restriction, equations (4.6) and 

r /  

\ n 

and the optimum (zero  variance) hTN) is:  

(4.10) 
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As pointed out in Chapter 3, the noise selected (by the computer) 

for each bit of the received signal is simply a number, N , selected from 

a gaussian distribution, g(N ). We may consider any noise, N, to be a se t  

of independent bit-noises, N , and hence the probability density h(N) of any 

N is the product of the probability densities g(N ) for the corresponding se t  

of N 's. r r r 
According to equation (4. 10) we should modify h(N) by multiplying it by 

Q(Y, N). 

of Q with the bit-noise, N , is such that Q is largest  when the amplitude of 

N is equal to the peak signal amplitude, S, (since then the signal plus 

noise may be halfway between t S and - S in which case we have the greatest  

uncertainty as to which signal, t S or  - S, was transmitted) and decreases  

for la rger  o r  smaller  N , the decrease being more rapid for higher signal- 

to-noise ratios. 

Figure 5(a) by a function shaped something like that of 5(b), with the result  

shown in 5(d). The result  must, of course, be normalized so that it is in- 

deed a probability density function. 

tained by adding to h(N ) of 5(a) a function such a s  that of 5(c). This latter 

is very easy to accomplish in the computer by simply selecting some of the 

N ' s  from a flat distribution f ( N  ) such a s  5(c) and some of them from g(N ) 
r r r 

of 5(a). 

determined by playing an auxiliary game of chance, and the percentages of 

time that each should be used, as well as the half-range, B, of 5(c), a r e  

determined (for minimum variance of the estimate P ) by experimentation. 

This technique of reducing the variance of our estimate, P3, worked very 

well for  P of around 0. 1 (signal-to-noise ratio of 2) .  For  this case,  B of 

Fig. 5(c) was 2. 5 and the flat distribution f ( N  ) of Fig. 5(c) was used 

(randomly) for selecting 20% of the bit noise values. With these values, 

gives a good estimate of P ' s  l ess  than 0. 1 (signal- W W 
to-noise ratios of 3 o r  greater)  this simple technique did not reduce the 

r 

r 

r 

r 
Therefore, we may modify h(N) by modifying g(N ) to obtain gTN ). 

Ignoring the variation of Q with Y we may reason that the variation 

r 

r 

r 
Hence to obtain g"(N ) we should multiply the g(N ) of 

r r 

Somewhat the same result  can be ob- 

r 

Which of these distributions is used for a particular selection is 

3 

W 

r 

p3 
with L = 300. For  P 
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variance sufficiently to make the monte carlo calculations practical. 

techniques for modifying the noise distribution could surely be found to make 

calculations for higher signal- to-noise ratios practical. But this was  not 

pursued further because the trend of the results is apparent without these 

further calculations. 

Other 

The "weighting factors, ' I  h(N.)/hTN.) of equation (4.9) a r e  calcu- 

Let A be the fraction of the bit-noises, 
1 1 

lated as follows (for n =2, m = 6 ) .  

N , selected (on the average) from the flat distribution f ( N  ) of Figure 5(c), 
r r 

and 1-A the fraction selected from the gaussian distribution g(N ) of Figure 

5(a). Then 
r 

g*(N ) =(1-A)g(N ) t Af(N ) and 
r r r 

k = l  

lNrl  cB 

INrl> 

The index of the multiple product goes to 12 because we a r e  considering the 

case of two 6-bit words (i. e. , n = 2, m = 6). 

The IBM 7090 computer programs used for the computation of e r r o r  

probabilities a r e  presented and discussed in Appendix V. 



Chapter 5 

INTERPRETATION OF RESULTS 

Computed results a r e  presented in Appendix VI. As  discussed in 

Chapter 3, these a r e  the minimum attainable word-error probabilities for 

n = 2 when any two waveforms, g (t) and g (t), with equal energies (see 

equation (3 .  5)) and with finite-time correlation coefficient, 

equation ( 3 . 6 ) )  a r e  used to represent the binary character of the PCM codes. 

These results can easily be used to determine the minimum attainable word- 

e r r o r  probabilities when any two waveforms, f ( t )  and f (t), a r e  used to 

represent this binary character of the codes. 

f , ( t )  and f,(t) to have the same energies nor for their  finite-time cor re-  

n 1 2 
, of - 1 ( see  

1 2 
It is neither necessary for 

- 

- I L 

lation coefficient, , to be -1. In fact, their correlation coefficient, A ,  
need not even be determinate. 

BY 
There 

Consider two arbitrary waveforms, f l ( t )  and f (t) of duration T 
2 

used for representing the binary character of the PCM waveforms. 

is associated with any such pair of waveforms a "correlation" parameter,  

o(, defined as follows: 
f 

(5.1) 

This parameter is identical to h when the two waveforms have equal 

energies. 

1 /2  [f,(t) t f 2 ( t g  we obtain new functions, g,(t) and g,(t), which have equal 

energies and a n ( o r W )  of -1. 

If we subtract from both f ( t )  and f ( t )  the waveform s(t) = 1 2 

- 43 - 
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This is a linear reversible operation which could be performed on the r e -  

ceived noisy waveforms to convert the signal portions of the received wave- 

forms f rom f.(t)  to g.(t), but without altering the (added) noise portion of the 

waveforms. 

with the minimum-error demodulator and obtain the e r r o r  probabilities 

of Appendix VI. Since the conversion operation is reversible, these e r r o r  

probabilities represent the minimum attainable e r r o r  probabilities for the 

original, received waveforms vs. the signal-to-noise ratio of the converted 

waveforms. But since the conversion does not a l ter  the noise, the change in 

signal-to-noise ratio due to the conversion operation is just  the square root 

of the ratio of the average power in the signal portions of the original and 

converted waveforms. We assume that Ityest’ bits and I1no1’ bits (i. e. ,  f l ( t )  

and f ( t ) )  occur with equal frequency since this assumption is implicit in the 

results of Appendix VI  a s  a consequence of assuming the data distribution of 

1 1 

Then we could operate on these converted (noisy) waveforms 

2 

Figure 4. Then the average power of the original signal is 

where <X> indicates the 2 1 2 2 
Sf = T < f l ( t )  + f 2 W  > 

average over one bit time, TB, of X. 

The average power of the converted signal is 

and hence : 
1 /2  

= (Ax) original signal-to-noise ratio 
c onve r te d s ignal- t o - no is e ra t  io 

Therefore the results of Appendix V I  may be applied to any binary PCM 

waveforms whatever by simply multiplying the S/N values by 
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The computed results for n = 2, m = 6 a r e  presented graphically 

in Figure 6. This figure shows the minimum-attainable word-error proba- 

bility, vs. signal-to-noise ratio (normalized by i 1 - m . )  when two noisy re-  

ceived (6-bit) binary PCM code words a r e  used in the demodulation of one of 

them i f  the correlation coefficient between the data samples represented by 

the code words is P and the data has the gaussian amplitude distribution 

of Figure 4. Results a r e  shown for = 0, 0. 5, 0.7, 0. 9, 0. 95, and 0.98. 

Results a r e  also shown for completely random bi ts  - i. e. , no interbit de- 

pendence. (Note that for gaussian data there is interbit dependence due to 

the data amplitude distribution, even for p =  0 . )  

The results for n = 2, m = 3, presented graphically in Figure 7, 

indicate greater available gaiw from high data correlation for  three- bit 

words than those indicated in Figure 6 for six-bit words. 

prising when we consider, for these two cases ,  the relative probabilities of 

two correlated data samples falling in the same quantization interval. Con- 

s ider  the conditional probability density function, p( Y 

sample, Y2, when the value of the f i r s t  sample, 

This i s  not sur- 

I Y ), of the second 
2 1  
is given. If Y and Y 2 yl' 1 

are gaussian variates with 7ero 

coefficient , then: P 

For  the assumed distribution of 
,m 

I L 
g=TT 

mean, variance c', and correlation 

Figure 4 we have 

where I i s  the width of a quantization 

interval. 

Hence the mean of the gaussian conditional distribution of Y given Y i s  
2, 1' 

f Y I D  and the variance is: 
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for m =3:  1 =1.54 /T I =0 .67  I for p = . 9  

= O .  31 I for =. 98 

f o r m  =6;  cl ~ 1 2 . 3  Jl_pL’ I =5.4 I f o r  Q = . 9  
I 

= 2.5 I for p =.  98 

Therefore the probability of Y and Y 
2 1 

interval i s  considerably greater for three-bit quantization than for  6-bit 

quantization. 

dependence between quantized samples i s  l ess  for finer quantization (i. e. , 
higher m). 

would be expected to decrease for increased m as i s  indicated by comparing 

Figures 6 and 7. 

falling in the same quantization 

Or, in general, following the same reasoning, the relative 

Consequently the gains available by use of such dependence 

Curve 1 of Figure 6 is for completely random PCM waveforms. 

Curve 2 is for data with the gaussian amplitude distribution of Figure 4,  

but with no correlation between data samples. 

probability p( y 

Fo r  this case,  the inverse 

, z  ) becomes: 2 (p ) lZ1  2 

2’ where K ( z )  is constant with respect to y b 

This expression is identical to that obtained for p(y I z )  for 
(PI 

n = 1. Therefore curve 2 also represents the word-error  probability for 

n = 1, m = 6. The factor f ( Y  ) represents the relative a pr ior i  proba- 
2(P) 

bilities of the quantized data values, Y, and i s  not dependent upon signal 

power o r  noise power. Therefore by the same reasoning as that used in 

Chapter 2 (page 16) we may conclude that by using two data samples with 

unity correlation coefficient (i. e. , p = 1. 0)  a power gain of 3 db is made 

possible relative to that required for  one word (o r  for P = 0). 

ing curve is curve 8 of Figure 6. 

The result- 
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The results of Figure 6 for correlation coefficient of 0. 5, 0.7, 

0.9, 0.95, and 0.98 do not indicate a s  much power gain due to use of such 

high data correlation a s  might have been anticipated. This appears parti- 

cularly t rue for word-error  probabilities less  than 0. 1. For  p = 0.98 the 

power gain is a little more than 1 db f o r  P 

for  P 

to decrease as P decreases. 

of 0.4; it is approximately 1 db 
W 
of 0. 1, and appears to continue of 0.2; it is less than 1 db for  P 

W W 
W 

But in determining the power gains available by use of data sta- 

t ist ics we have assumed that the word-error probability is the "per- 

formance parameter" which i s  specified (i. e. ,  fixed). 

formance parameter such a s  rms e r r o r  is fixed, the available gains may 

be different f rom those determined with fixed word-error probability. 

course, as discussed in the Introduction, the (demodulation) operation 

should be optimized for the performance parameter of interest. 

not unlikely that an operation optimized for  one performance parameter may 

give considerably improved performance for some other performance para- 

meter. 

have optimized for  word-error probability may give considerably improved 

r m s  e r r o r  performance. 

tained a s  follows f rom the computed word-error probabilities for  n = 2 ,  

m = 3 (presented graphically in Figure 7). 

If some other per- 

Of 

But it is 

More specifically, the optimum demodulation operation which we 

Some qualitative indication of this may be ob- 

The results of Figure 7 for three-bit words may be interpreted as 

the minimum probabilities of e r ro r  in the three most significant bits (i. e. , 
the "upper half") of the six-bit words when use is made of only the "upper 

half" of the received words in the demodulation. 

bilities cannot be lower than the minimum probabilities of e r r o r  in the 

three most significant bits when use is made of the entire received words. 

Hence the minimum probabilities of e r r o r  in the three most significant 

bits of six-bit words is equal to o r  l e s s  than the e r r o r  probabilities ob- 

tained from Figure 7. 

But these e r r o r  proba- 
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Therefore, for p {G = 2 for example, from Figure 

that a correlation coefficient of 0. 98 reduces the probability of 

6 we see 

e r r o r  in a 

six bit word from 0. 13 to 0. 078 - that is, by a factor of almost 2. But 

from Figure 7 we see that the same correlation coefficient reduces the 

probability of e r r o r  in the three most significant bits by a factor of 4 o r  

more. 

amplitudes than do e r r o r s  in the least  significant bits, the above indicates 

that the gains afforded by use of a priori  data statistics may be greater for 

a specified e r ror  amplitude parameter (such a8 rms e r r o r )  than for speci- 

fied e r r o r  probability. 

Since e r r o r s  in the most significant bits result  in larger  e r r o r  

The above consideration also suggests a method f o r  obtaining 

approximate results for m = m from computed results for m = m 
2 1 

m l  < m2. 

the correlation coefficient, ,O , can be as high a s  0.9 without inducing much 

dependence between the lowest order bits of the 6-bit codes representing the 

two words. This suggests that for p 5 0.9, e r r o r s  probably occur in the 

low order  bits with about the same frequency as with no interbit dependence. 

If we assume this to hold for the three lowest order  bits and use the com- 

where 

From equation (5. 2) and the discussion following it we see that 

puted e r r o r  probabilities fo r  three-bit words (Figure 

order  bits w e  obtain: 

3 
w p3' = 1-(1-P ) ( 1 - P  p W p 6  E 

=minimum word-error probability for w r o b  
where P 

7) for the three highest 
\ 

(5.4) 

two 6-bit words (n  =2, 
I 

P -  

P 

m = 6 )  with correlation coefficient, 

=minimum word-error probability for  two 3-bit words (n  = 2, p w p 3  
m = 3) with correlation coefficient, 

= minimum bit-error probability with no interbit dependence. 
pE 

Or, more generally, for estimating the minimum word-error probabilities 

P for two ,(-bit words from computed resuits for two m-bit words* W 

(1-P 1 = 1  - ( I - P  ) 1 - m  

wpm ' w p  E (5 .9 )  
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The relation (5.4) matches very well with the computed results for 3-bit 

and 6-bit words. Equation (5.5) should give even better results for pre- 

dicting word e r r o r  probabilities for ,(> 6 and m = 6 since the interbit de- 

pendence of bits of orders  lower than those of the six most significant bits 

of each word is almost completely unaffected by data correlation coefficients 

of 0.98 or  less.  

The reasoning employed to conclude that a 3 db power gain is made 

possible by using two words (i. e. , n = 2) when 

conclude that an additional 3 db gain is made possible each time n i s  doubled. 

The resultant total gain, C , f o r  n words with = 1. 0 is: 

= 1.0 can be employed to P 

r P 

1 n- 1 

G r = C  0 [l+E (G.-1) 1 

i = l  

where G is the gain available from use of the a pr ior i  amplitude distribution 

of the data values. (That is, the power gain between curves 1 and 2 

of Figure 4. ) 
G. is the power gain, relative to the power required for  n = 1 (o r  

equivalently for ,O = 0), fo r  each of the n- 1 additional words if used 

one-at-a-time. That is, G. = 2 f o r p = l .  

0 

1 

1 

This expression also applies, of course, for p = 0 in which case 

Whether or  not it applies for  0 < p (1 (i. e . ,  1 <G. (2) is not 

If i t  were applicable it could be used in conjunction with the results 

G. = 1. 

known. 

of Figure 6 to estimate the total gain available by making use in the de- 

modulation process of an arbitrarily large number of received words with 

any specified data correlation. F o r  example if the data samples have the 

correlation coefficients determined in Chapter 2 for 3rd order  Butterworth 

data and the word e r r o r  probability i s  specified to be 0. 1, we would find that 

the available gain f o r  very large n is about 1 db. 

indicated in Figure 6, G. approaches unity rapidly as 

1 1 

This assumes that, a s  

decreases. 
1 P 
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Since monte-carlo computations involve model sampling and r 

statistical estimation of results, rather than rigorous calculation of 

results,  an associated difficulty i s  that of establishing confidence in the 

monte-carlo results. A direct calculation of confidence intervals such as  

that performed in Chapter 4 for the simple estimate, P 

possible because the probability distribution of a n  estimate is generally not 

known. It would be possihle to  use the computed values of Q (see  Appendix 

VI,  Tables 7, 8, 9) to establish confidence to some extent as follows:- f i rs t ,  

is usually not 1' 

s = -  estimate the variance, (&', of the Q's  by the estimate 2 

i = l  L- 1 

(Replace P by P and Q by Q h/h'when P is used a s  the estimate of P ). 

The confidence of this estimate ?an be established by assuming s to have a 
W 2 2 3 3 

Ifchi-square'' distribution of L- 1 degrees of freedom (see Reference 2, 

Chapters 6 and 8), but the estimate should be very close to 

large L's used here. 

2 fl for the 

2 3 

Q 2 rp of the estimate P ( o r  P ) is Then the variance 
2 GrQz y S q2 = L L 

- -  

Then; by assuming a probability distribution for  P (o r  P ) we can establish 
2 3 

confidence intervals a s  was done for  P in Chapter 4. 

tained in this report, i t  i s  believed that confidence can best be established 

simply by notkg  the consistency of the results as  presented in Figure 6 (or  

Figure 7). That is, siuce the results a r e  known to be unbiased, the con- 

sistent spacing and consistent trends of the curves connecting the computed 

points serves  to establish a more meaningful confidence in the results than 

would a formal treatment such as the one outlined above. 

But for the results ob- 1 

For  specified word-error probability less  than about 0. 1, the 

computed results indicate that f o r  significant gains to accrue from the use 

of data redundancy, the correlation coefficients between data samples must 

be large (i. e . ,  0.98 o r  greater)  for  large numbers of samples. 

parently becomes t ruer  a s  the specified word-error probability becomes 

This ap- 
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lower. 

must be determined by examining typical data and e r r o r  requirements. 

There a r e  surely cases  where data sample rates  a r e  high enough so that 

sufficient redundancy is present even though such high sampling rates may 

not be necessary for the data recovery accuracies required. 

Whether or  not sufficient redundancy is present in transmitted data 

In such cases  

the existence of the high redundancy in the data may not even be recognized. 

But data redundancy which is not known a pr ior i  a t  the receiver cannot be 

used to improve the demodulation operation. 



ChaDter 6 

ALTERNATE TECHNIQUES AND POSSIBLE 

F U R  THE R INVES TIGA TIONS 

The results obtained here and discussed in Chapter 5 indicate 

only in a general way the values of data correlation and specified e r r o r  

probabilities for which the use of a pr ior i  data statistics and minimum- 

e r r o r  demodulation may be of significant value. Investigation of data sta- 

t ist ics for c lasses  of sampled data measurements of general, o r  specific, 

interest  may reveal very high correlation coefficients (greater  than 0.98) 

between samples. In such cases the results should be extended to include 

the higher values of At  any rate there may be circumstances where, 

due perhaps to very high data correlation or  high tolerable e r r o r  probability, 

the use of a practical implementation of the minimum-error demodulator is 

desired. 

. P 

The most obvious implementation, suggested by combining 
m equations (2. 3)  and (3 .  3), is to use n2 finite-time correlators  (i. e . ,  one 

for each of the possible 2m transmitted word waveforms in each of the n 

word time slots considered) to evaluate the factors of the form h(z.-y 

then combine these factors and g(y 1, - - -, yn) by appropriate exponentiation, 

summing, and weighting, in accordance with (2. 3) for each y 

select the y giving the largest result. But, a s  indicated by equation ( 3 . 4 ) ,  

the correlation operations m a y  be done bit-by-bit. 

1 i(p))’ 

j(p), and 

j(p) 
And since the z ‘ s  a r e  

ir 
has only two possible forms, i. e. f ( t )  o r  f2(t), all of the 1 given and y 

i (P) r  
required correlations can be performed by one pair of correlators  with 

references f ( t )  and fZ(t) .  These correlators  may then operate on the z ‘ s  
1 ir 

to produce the te rms  on the right hand side of equation ( 3 . 4 ) ,  which a r e  of 

the form 
Z Y  dt 
ir i(p)r 

- 54 - 
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But since there a r e  only two possible y 

only mn (given) z 

possible results for the above operation. 

may be stored, with appropriate indexing, and combined by digital computer 

o r  similar device according t o  equations (3.4),  (3 .  3),  and (2. 3 )  to produce 

evaluations of p(y , z  ) for each p. Therefore it is not a com- 

pletely unreasonable task to realize such a demodulator in principle. 

with present computing speeds only a few words (demodulations) per  second 

can be handled for n = 2 ,  and even fewer f o r  l a rger  n. 

' s  (i. e.,  f l ( t )  and f2(t))  and 
i (p)r  

'S involved in a demodulation, there a r e  only 2mn 
ir 

Hence these 2mn resulting values 

j (p)  I z l s  - - -  n 
But 

Because of this limitation in operating speed and the complexity of 

this "optimum" (minimum-error) demodulator, a simpler "approximate" 

implementation of the demodulator may be desirable. One such approxi- 

mation may be derived by a modification of the optimization procedure as  

follows. Suppose that instead of being given the n received noisy signals, 

, z , we a r e  given the received signal, z and the n- 1 previous t rans-  
z l ' - - -  n n' 
mitted signals, y 1, - - -, yn- 1, and we wish to make a minimum-error proba- 

bility estimate of y . which maximizes 

the conditional probability distribution, p(y 

which maximizes this conditional distribution would be a better estimate of 

That is, we wish to select  the y 
n n(P) 

, z  ). Th 
n(p) 1 '1, --- ' Yn- 1 n e Yn(P) 

1 2  1 n(p) l z 1 3  - - -  n the transmitted y than would the estimate which maximizes p(y 
4 s )  

since the y ' s  a r e  not contaminated by noise a s  a r e  the z ' s ,  but y l ,  ---, yn- 

a r e  not known at the receiver. However, we may assume that estimates of 

these a r e  known from the previous n-1 demodulations and will  be used in- 

stead of the actual y's. 

mentation of a "nearly optimum" demodulator o r  estimator,  we have tacitly 

assumed that use i s  made of z and estimates of y ' s  occurring in time pr ior  

to z , but not after z . This is not a necessary limitation since by perform- 

ing successive (iterative) demodulation operations, use can be made of 

previous estimates of y ' s  occurring both before and after z 

Therefore we must determine the operations on y l ,  ---, yn- 1, zn necessary 

(Since the objective here is to derive a simple imple- 

n 

n n 

if  desired. ) 
n 
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, Z  ) so that we may select the y 
n(p)ly1' - - - )  yn-1 n n(P) 

to evaluate p(y 

which for  any given ylJ ---, yn-l , z gives the maximum value. 

But v(z n l Y I J - - - J Y n - l J Y n ( p ) )  = v  ( zn}  Y n ( p ) )  = h  (z n - Yn(P)) 

where h(n) is the probability density of the additive noise, n(t). 

) i s  not dependent upon y it can be considered a Since r (z  

constant, 1/K for  the maximization with respect to y And since each 

set of waveforms, y - - -  
quantized data samples, Y1 J - - -  , Yn, the conditional probability distribution 

g(Yn(p) I ~1 J - - -  J Yn- 1 ) may be replaced by f ( Y  

n I '1' - - - J  Yn- 1 n(p) 

C d p ) '  
, represents uniquely a corresponding set of 1' 'Yn 

, Y ). Hence, 
n(p) 1'1' - - -  n- 1 

for additive band-limited gaussian noise of spectral  height K 2 (see page 69 

of Reference 14): 

f ( ~ ~ ( ~ )  Iy1* - - - a  Y n- 1 (6. 2 )  

If the two Waveforms, f l ( t )  and f,(t), used to represent the binary code have 

equal energies,the first exponential factor in (6. 2) will be the same for any 

and can be absorbed into the constant, K (2). (K (2) is a function of 2; 
Yn(P) d d nJ 
but not of y ). The exponent of the second exponential factor can be 

4 P )  
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, 

obtained for  any y 

and input z . 
must be equal to the amplitude of the signal component of z . 

n 2 
signal amplitude a s  well a s  noise spectral  height, K , (proportional to 

receiver noise figure) must be determined in order  to obtain the exponent 

of the second factor. The last factor has, in general, a different value for 

each y n(p). 

tained by the finite-time correlator with reference y (or ,  equivalently, 

a value which must multiply, o r  "weight,"' the result  obtained by expo- 

nentiating the correlator output). If the values of the f i r s t  exponential 

factor of (6. 2) a r e  not constant for all y 

each y 

by a finite-time correlator with reference y 
n(P) n(p) 

It should be noted that the amplitude of the reference y 
n 4 P )  

Therefore, 

It is a value whose logarithm must be added to the exponent ob- 

n(p) 

they must be determined for  
4 P ) '  

and then treated in the same way a s  the values of the las t  factor. 
n(p) 

The values of the last factor, f ( Y  IY1, - - - a  Y ) a  can be ob- 

tained to very good accuracy, for gaussian data, by evaluating, f o r  each 

Y 

n(p) n- 1 

a gaussian probability density function with mean and variance deter-  
4 P ) '  

Expressions for determining both the mean and 
n- 1' mined by Y --- a Y  la  

variance of the gaussian density function may be obtained in either of two 

ways. 

Reference 9 for calculating the "regression function'' of Y 

simply the mean of f(  Y 

Y1, - - - a  Y n- 1' 
ficients of the data samples Y 

is a technique which can be used to calculate the variance of f ( Y  

f rom the correlation coefficients between data samples. 

The f i r s t  method is to  use the technique outlined in Chapter 9 of 

which is 
4 P ) '  

- - - a  Y ) and i s  a linear function of 
n(p) l y l ,  n- 1 

the coefficients being determined by the correlation coef- 

Also outlined in Reference 9,  - - - a  Y 1' n- 1' 
, Y  1 n(p) ly l , - - -  n- 1 

The second method for getting expressions for the mean and vari-  

, Y ) for gaussian data is by optimum linear pre- n(p) Iyl' - - -  n- 1 ante of f ( Y  

diction to  minimize mean-square-error,  noting that for gaussian signals the 

optimum linear predictor i s  the optimum predictor (see page 275 of 

Reference 6) and that the prediction which minimizes mean- square e r r o r  

must be the mean of the (conditional) probability distribution. Consider the 
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of a signal, Y(t) ,  when some y2' problem of linearly predicting a value, 

and Y value, 

interval T . Let the predicted value of Y be Y2. Then ?, = W Y  where 

W may be a function of r̂ a but not of Y 

= Y2 - WY e = Y 2  - Y 2  

is known and when Y a r e  separated in time by an 

2 1 
The prediction e r r o r  is 

A yl '  1 2 

1' 
A 

and the mean-square e r r o r  is 1 

- 
2 - 2WY1Y2 t w 2 2  Y1 e = Y2 

- -  
Let: Y l  = Y2 = o  

Then: - 
e =G2 - 2 w p  c2+w2G2 - 

2 
To minimize e with respect to W 

o r  w =per, 
Therefore p( 
bution f(  Y 1 Y ). 

e r r o r  of this prediction or: 

) Y1 is the mean value of the conditional probability distri-  

The dariance of this distribution is the mean- square- 
2 1  

This procedure can be applied for any number of known points, Y1? - - - 1  Y n- 1' 

) given in equation (6 .  2) n(p) I '1' - - - J  Yn- 1' zn The expression for  p(y 

indicates that we can determine the y 

c ros s  correlating the received waveform, z (t)  with each y 

ponential of each correlator output, and weight each of these with the 

which maximizes this expression by 

obtaip an ex- 
n(p) 

n 4 P ) '  
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a Y ). (Additional 
n(p) 1'1, - - -  n- 1 corresponding conditional probability f(  Y 

weighting is necessary if the y 

mum result  thus obtained corresponds to the most likely y 

given z 

' s  have unequal energies. ) The maxi- 
n(p) 

for  any 
4 P )  

and Y1a - - - a  Yn- 1. 

E r r o r  probabilities f o r  this "near-optimum'' demodulator have not 

n 

been computed, but their  computation by the monte- car lo  technique would 

be considerably simpler and require much less  computer time than for the 

minimum-error demodulator, and the computation time does not increase so  

rapidly as n gets large. 

1 
Another "approximation" of minimum- e r r o r  demodulation which 

makes use of data correlation would be the detection of individual bits 

( ra ther  than words) af ter  averaging the signals for that bit-time over an 

appropriate number of sequential samples. The "appropriate number of 

samples used would be different for bits of different order  as may be seen 

from the following qualitative discussion. It wi l l  also vary with signal-to- 

noise ratio and with correlation between data samples. 

Certain bits, o r  binary digits, (such as the most significant bit) 

of ordinary binary PCM code words representing data a r e  not likely to 

change for  several  sequential samples if there is high correlation between 

data samples. 

gaussian noise of zero mean, employs some linear smoothing process,  

such as a correlation detector, the noise component out of the smoothing 

device is gaussian and i t s  mean-square value decreases  as the smoothing 

time increases. 

better detection could be accomplished by smoothing that bit over several  

samples. 

change once o r  more during the "smoothing time" and the resulting de- 

tection may be poorer than for smoothing over one sample only. 

If the detection of these bits, contaminated by additive 

Therefore if a bit does not change for  several  samples, a 

But if the bit is smoothed over too many samples it wil l  probably 

There wil l  

1 This approximation was suggested by Professor  Rauch. 
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I -  

in general be an optimum number of samples over which each bit of a PCM 

code should be smoothed for given data correlation and signal-to-noise 

ratio. 

samples is not readily apparent. 

to assume values of correlation coefficients p ( k T  ) for samples separated 

by k sample periods T 

(for smoothing over a single sample). 

e r r o r  for each bit position of the code (i. e.,  most significant bit, second 

most  significant bit, etc. ) fo r  smoothing over two samples, three samples, 

etc. to determine the optimum number of samples for minimizing the 

probability of e r ror .  

A feasible method for  determining these optimum numbers of 

One conceivable, but crude, approach is 

S 

and of smoothed output signal-to-noise ratio, S/N 
S 

Then calculate the probability of 

th The bit e r r o r  probability for the r bit after smoothing over n 

samples is 

P =i\ P.Q Enr I nj j r  
j = 1  

th 
Where Q is the probability of occurrence of the j combination 

j r  th 
of bit values (1's and 0 ' s )  for the r 

is the bi t -error  probability after smoothing over this j 

bit in the n (coded) samples, and P 
th nj 

combination of bit 

values. 

For  example, for n = 2 there a r e  four possible combinations of bit 

values for any given bit. These a r e  00; 01, 10; 11, for  which we let j = O ;  

1; 2; 3 respectively. Let S / N  be the ratio of peak signal to r m s  noise out 

of the smoothing device ( e .  g. , aperture filter, or finite-time correlator) 

after smoothing over one sample only. Then for bit combinations 00 and 

11 the value of P after smoothing over two samples is (for gaussian noise): 
2j 

- v S / N  
2 

-x 1 2  dx e . 
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since peak signal out remains the same while r m s  noise decreases by F. 
These values can be found f rom gaussian tables for any S/N.  

combinations 01 and 10 the value of P 

For  bit 

after smoothing over two samples 
2j 

is P = P22 = 0 since peak signal out is  zero. 
21 

The corresponding values of Q a r e  more difficult to  calculate. 
j r  

They depend upon the statistical dependence between data samples and wi l l  

be different for different bit positions, r. For  the most significant bit (r = 1) 

the probabilities of occurrence for 00 and 11 (i. e. for j = 0 and 3) are:  

-00 -a) 

where Y and Y a r e  the first and second data sample values, Y is the 1 2 h 
half-scale data value, and p(Y Y ) i s  the joint probability density for data 

1' 2 
samples Y and Y2. If the data is assumed gaussian, the Q ' s  will be 

determined by the correlation coefficient, ( T  ). The probabilities of 

occurrence for 01 and 10 (i. e. for j = 1 o r  2) are:  

1 j r  

P s  
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For  the second most significant bit ( r  = 2) the double integration must 

cover four separate regions of the Y Y space for  each Q That is, for 

Q the integration must cover the regions where the Y and Y values 

a r e  either l e s s  than quarter- scale or between half- scale and three-quarter- 

scale (i. e . ,  the regions where the second most significant bit of both coded 

1 samples is flO"); for Q the integration must cover the region where the Y 

value is either less  than quarter-scale o r  between half-scale and three- 

quarter scale while the Y 

o r  between quarter-scale and half-scale (i. e. , the regions where the second 

most significant bits of the f i r s t  and second coded samples a r e  "0" and "1" 

respectively); etc. 

1 2  j 2' 

02 1 2 

12 

value is either greater than three-quarter scale 2 

In principle this approach can be extended to any number of sample3 

and any number of bits, but the computations rapidly become very complex. 

A serious attack upon the problem of determining the optimum number of 

samples over which the bits should be smoothed might well yield a better 

approach. 

dependent upon S / N  and the PIS, thus requiring knowledge a t  the receiver 

of signal-to-noise ratios and data correlation. But such knowledge is also 

required for the optimum (minimum-error) demodulator and for  the "near- 

optimum" demodulator discussed ear l ier .  

necessary in order  to combat thresholding. 

The optimum number for  any bit (order)  would surely be 

Such knowledge appears to be 

Thresholding i s  considered here to be the phenomena which causes 

the mean-square e r r o r  of the demodulated signal to increase faster  than the 

input mean- square-noise-to- signal ratio. For  systems employing both pulse, 

code-modulation and some form of rf-modulation (i. e. ,  AM, PM, FM)  thres- 

holding will, in general, result from both. But the minimum-error de- 

modulator completely avoids thresholding due to rf-modulation. This is 

apparent since different types of rf-modulation merely require different 

waveforms, f ( t )  and f (t), for representing the binary character of the 

coded signals. 
1 2 

But we have found in Chapter 5 that the statistical results 
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obtained by the minimum-error demodulator (for e r r o r  probability o r  

e r r o r  amplitudes) i s  dependent only upon the parameter W , defined by 

equation (5.1); and for any o< (between - 1 and t 1) we can find waveforms 

f ( t )  and f ( t )  corresponding to an AM-modulation, which exhibits no thres* 

holding due .to the rf-modulation. 

- 

1 2 

That thresholding due to the pulse-code-modulation is combatted 

somewhat by the minimum-error demodulator can be seen qualitatively from 

the result (also discussea in Chapter 5) that this demodulator reduces e r r o r s  

primarily in the high order  bits of the codes. 

thresholding could be obtained by monte-carlo computations similar to 

those reported here,  but computing e r r o r  amplitudes, (rather than e r r o r  

probabilities) f rom which any e i ro r  amplitude parameters such a s  rms-  

e r r o r  or  mean-absolute e r r o r  could be obtained. Such results would also 

be of value for determining gains available from minimum-error demodu- 

lation for  specified e r r o r  amplitude parameters rather than specified e r r o r  

probability. 

maximum theoretical gains available for  the specified e r r o r  amplitude 

parameter. 

derivation of a demodulation technique for optimizing the specified e r r o r  

amplitude parametzr. 

Quantitative data on PCM- 

Of course thzse results would not necessarily represent the 

The determi-12t;on of such maximum gains would require the 

AiAot.he r worthwhile extension of the results reported here would 

be the fktermination of a simpler method for  calculating the low values of 

word-error probability P 

require very large computation time if the monte-carlo method is used. 

approximate analytical method might be determined by presuming that for 

low e r r o r  probabilities most of the erroneous words wil l  have only one bit 

in e r ror .  Another approach might be to presume that the results obtained 

for the "near-optimum" demodulator discussed above a r e t  fo r  low e r r o r  

probability, very close to the results f o r  the optimum demodulator. 

(e. g. ,  f o r  P W W < 0. 1) since these computations 

An 

This 
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seems a reasonable assumption since for  low e r r o r  probability most of the 

"previous estimates" used in the near-optimum demodulator should be 

correct,  particularly if the word e r r o r  probability is low when no use is 

made of data statistics. Monte-carlo computations for the near-optimum 

demodulator would require much l e s s  time than for the optimum demodu- 

lator. 

- 

This would permit extension of the results of Figures 6 and 7 to 

higher values of p J1-oc: 
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MINIMUM BIT-ERROR PROBABILITIES FOR DEMODULATION 

O F  RANDOM IDEALIZED PCM/FM 

The statement made i n  Chapter 1 (page 6 ) that "---the most 

probable y( t )  can be determined one- bit-at-a-time - - - I 1  assumes that 

during any bit time the P C M  s igna l  is one of two waveforms, f,(t) or fZ(t), 

which a r e  known independently of the waveforms existing during other bit 

times. 

modulated by a binary signal, this assumption is not true for non-integer 

deviation ratios since the phase of the sinusoid during any bit-time depends 

on the binary modulating signal during other bit-times. (Deviation ratio 

is the ratio of total frequency deviation to bit rate. ) In such a case, the 

most probable y(t) waveform is not necessarily that determined by select- 

ing the most probable waveform, y (t) ,  fo r  each bit-time. But the latter 

is the selection which minimizes bi t -error  probability if the entire received 

waveform, z(t), is used in making each bit decision - - -  that is if we  choose, 

for  each bit-time, the yg-waveform which maximizes p(y However, i f  

we assume that the phase of the two possible sinusoids is known for  each 

bit-time, then p(y I z )  = p(y I z ) and we may make minimum-bit-error- 

probability decisions one- bit-at-a- time and without reference to the received 

waveform, z( t), during other bit- times. The bit-error probabilities thus 

obtained can not be greater than those obtained without the assumption of 

known phase for the two possible sinusoids. 

e r r o r  probability can be established by assuming the phase to be known for 

each bit- time. 

For  conventional PCM/FM in which a single oscillator isifrequency 

B 

12). B 

B B B  

Hence a l o w e r  limit on bit- 

Therefore, f o r  purpases of calculating a lower limit on bi t -error  

probability we may consider the minimum-error PCM/FM demodulator 

(making no use of dependence between bits) to consist of two sampled, finite. 

time correlators whose sampled outputs a r e  subtracted. The correlation 
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time is one bit-time and the outputs a r e  sampled a t  the ends of the corre-  

lation times, which a r e  assumed to be coincident with the ends of the bit 

times. 

coherent with transmitted waveforms of frequency f and the reference for  

correlator  2 is a sinusoid with the sitme amplitude but of frequency f phase 

The reference fo r  correlator 1 is a sinusoid of frequency f phase 1 

1' 

2 
coherent with transmitted waveforms of frequency f We will  let the 2' 
sampled output of correlator 2 be subtracted (in a comparator) f rom the 

sampled output of correlator 1. When this difference (i. e., the comparator 

output) is greater than zero, the demodulator will  indicate that the trans- 

mitted waveform w a s  of frequency f 

it will  indicate that the transmitted waveform was of frequency f We now 

calculate the probability that this indication wi l l  be i n  e r r o r  when the trans- 

When the difference is less  than zero 
1' 

2' 

mitted signal is contaminated by independent, additive white gaussian noise 

of single-sided spectral  height K volts /cps  (o r  two-sided spectral  height 

k2 = 7 ). 

2 2 

K2 

A finite-time correlator of the type discussed above is a device 

which forms the product of a reference waveform and an input waveform, 

and averages this product over the ,correlation time which in this case is 

equal to the bit time T Since this is a linear operation on the input, we B' 
may consider separately the signal component, y(t), and the noise component, 

n(t), of the input, z ( t )  = y(t) t n(t). Let us  consider the correlator with refer- 

ence R (t) = C cos ( 

have either of the forms: y,(t)  = A  cos (d 
t + 0 ). The signal component, y(t), of the input may 

1 1 1 
t + 01) o r  y,(t) = A  cos ( d2 t t 02). 1 

If it is y (t),  the resulting sampled correlator output wi l l  be: 1 

0 0 
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The output due to signal y ( t )  is: 2 

0 0 

0 

Similarly we find that f o r  the correlator with reference R ( t )  = 

2 2 

2 
C cos (a t t + ) the sampled output due to signal y ( t )  is S 

placed b y d 2 .  and + by (p ) and the output due to y ( t )  is S 

either correlator,  the output resulting from the Ilmatchedl' signal is S 
while that resulting from the llunrnatchedl' signal is S 

( w i t h d l  re-  

That is, for  
2 m 

1 2 1 U' 

m 
Hence, the output 

U' 

of the comparator due to the signal is S = *  (S - S ). 
0 m U 

0 
TB \ 
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if 
2 a  B 1 

We now calculate the output due to white gaussian noise. 

The sampled output of either correlator due to noise n(t) is: 

R(t)  n(t) dt 
1 i” N(TB) = - 

TB 
0 

Hence, since R and R a r e  not random, the variance of the noise output of 

the comparator, is: 
1 2 

n TB n TB 

0 0 

J 

0 

since 



2 
where k is the two sided spectral height of the noise. (x is used here to 

indicate the ensemble average of x. ) Therefore: 

- TB 
k' 2 2  2 2  

=.B 
2 N 

0 

0 

4 1 

TB 
and ->> - 

2 8  

The conditions on t h e d  ' s  are satisfied in practice since a bit- 

(The consequence of these interval contains many cycles of the carxier. 

conditions not being satisfied is discussed in Appendix II. ) Hence the ratio 

of signal amplitude to r m s  noise out of the comparator is: 
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where: s =A/ 12' = rms value of input signal 

= bit rate 
1 B = -  

TB 

= ratio of total deviation (in cps) to bit rate 
G.12 -G.i D =  2 n B  

6 4 = 0, - 9 =difference in phase of references at beginning 1 
of bit interval 

2 2 K = 2k =one-sided spectral  height of noise 

The quantity "D" is often defined a s  the deviation ratio for PCM/FM. 

The quantity "6 +'I might, of course, be different for different bit intervals, 

but it is zero  for conventional PCM/FM systems in which a single oscillator 

is frequency modulated by the binary PCM waveform. For  this case, we 

wish to find the deviation ratio, D, which maximizes the ratio of signal 

amplitude to r m s  noise, S /cNJ out of the comparator, hence minimizing 

the e r r o r  probability. 
0 

The usual maximization procedure yields the optimum 

deviation rati'o. 

D =0.715 
opt 

The resulting S / cN is: 
0 

PCM/FM 

An e r r o r  wi l l  be made when the noise out of the comparator exceeds the 

amplitude of the signal out of the comparator and is of opposite algebraic 

sign from the signal. Since all operations on the input are linear, and hence 
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the noise remains gaussian, the bit e r r o r  probability is then 

0 
S 

-00 

Hence, for optimum deviation ratio of 0.715: 

-1.1p 

PCM/FM 1 

-00 
S 

p =  K W  
where 

Note f rom equation (1-1) that if the deviation ratio is any integer, the output 

signal-to-noise ratio is (with 6 9 = 0): 

D = n  

The corresponding bit-error probability is: 

-P 

Therefore, the minimum obtainable bit-error probability is the same for 

any integer value of deviation ratio. 

combination of values f o r  5 

maximiees 1-11 is: 

It may also be noted that the optimum 

and D (i. e. , the combination of values which 

6 + = 7 r  

D = O  
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This corresponds to phase shift keying (PSK) with phase shift of H radians, 

which is exactly equivalent to suppressed-carrier PCM/AM. 

output signal-to-noise ratio and e r r o r  probability are:  

The resulting 

- 5273 

-00 

Since 50% of the power in a PCM/AM signal with 100% modulation is in the 

ca r r i e r ,  the output signal-to-noise ratio and e r r o r  probability for correlation 

detection (i. e. , maximum-likelihood demodulation) of PCM/AM (non- sup- 

pressed-carr ier)  are: 

( > N )  PCM/AM 

.= p (1 -9 )  

-P 

For  PCM/FM with random 6 9 resulting f rom non-synchronous 

switching between two oscillatbre of frequencies 

uniformly distributed between t TT and - 7 radians; and from equation (1- 1) 

we see that 

and G) 6 $ is 
1 2’ 
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with symmetrical distribution (that of a sinusoid) about i ts  mean value of 6 2 . 
2 It may be seen that the maximum amplitude of the variation of 

- 

a b o u t p '  depends upon the deviation ratio, D, and is zero  fo r  D equal to any 

integer. We may consider the e r r o r  probability, P (6 +), to be a function of E 
6 + and hence also a random variable: 

S 

-00 

Now from this expression, since %/ cN must be positive, any two values of 
2 [-/ gN ( 6  +)] symmetrically spaced about its mean value, p 2, will 

yield two e r r o r  probabilities whose average i s  easily shown to be greater 

than the e r r o r  probability for [%/EN (6 +)I 2 =p2. Therefore any 
2 p2, will  result is\ 

symmetrical  variation of [,!&/GN ( 6  +)] 

a higher average value of P than if the variation of [i5/ GN] were zero. 

Hence, for PCMIFM resulting from non-synchronous switching between two 

about i ts  mean, 
2 

E 

oscillators, the lowest possible e r r o r  probability is obtained with D equal 

to any integer, and this e r r o r  probability is: 

(I- 11) 

-00 PCM/FM 

which is the same as for PCM/AM (with carr ier) .  



APPENDIX I1 

AN U P P E R  LIMIT ON THE INACCURACY O F  P C M / F M  RESULTS 

D U E  TO CARRIER FREQUENCY MUCH GREATER THAN BIT RATE 

From Appendix I we see that with 9 = 0, = + (i. e . ,  conventional 
1 

1 
PCM/FM) ,  if we do not assume that lJ 1 and L d 2  

21T >>>- - >> - 
TB TB 

2 n  

then: 

s 'S - s  = -  A C  
sin [ 2 U 1 T B  t 2+] - sin 2+ 

2LJ1TB 
o m u  2 

=K1 (G+V) 

where: 
AC 

2 K1 = - 
sin 2~rD G = l  - 2 TD 

2LJl TB 
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Similarly we find that 

2 6 = K 2 ( G t W )  
N 

C2k2 
where K = 

TB 2 '  

sin [ 2 u 1  T~ t 2+] - sin 2+ sin Pu2 T~ + 2+] - sin 2+ 
and W = t 

therefore 

K p  +VI G + V  - 0 
S 

- = K3 
G N /o' izT7 

Now in Appendix I, by neglecting the te rms  V and W we obtained a simplified 

N: expression for s f (j- ' 

W e  wish t~ find an upper limit (as a function of LJ 

value of: 

T 1 B  and D) on the (positive) 

F =  

( k ) S 

S. 
0 

(k) S 

= 1  - R 
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S This quantity must be non-negative since (k)s ;N 

This follows f rom the following reasoning: E r r o r  probability is 

a monotonic, decreasing function of output signal-to-noise ratio. Henc.e we 

have shown in Appendix I that if the c a r r i e r  frequencies, 
- - 

2lT 2 l l  

are arbitrari ly high, i s  the highest obtainable value of output 

( 'N) S 

signal-to-noise ratio. 

the bit rate) the highest obtainable output signal-to-noise ratio i s  

If the car r ie r  frequencies a r e  not high (relative to 

S 
0 

~ 

G N  
But since any signal with low frequency ca r r i e r  could be obtained by multi- 

plying a signal with arbi t rar i ly  high c a r r i e r  by a sinusoid and filtering to 

eliminate the sum frequencies (although the inverse is not necessarily 

possible), S cannot be greater than [ So 1 . Also,  since both 
0 

and must be real and positive, so must their ratio, R. 
0 
S 

- GN (5) S 

2 2 Therefore if we can find a lower limit on R (i. e. ( R  ) 

l imit  on F is established since F - 1 - 
then an upper min 

< K n  

V v- w > l t - t -  
v -  w (v.-w)2 = 1  t - v t  t 

G ( C + W )  G G G ' + G W  G G 
- 2 ( G + V ) 2  R =  

(11- 1) 
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I * -  

sin (2x  t 2+) - sin (2x  t 27rD t 2+)+ sin 2+ sin 2+ 
then: 

V =  - 
2x 2x + 25rD 2x + 2nD 2x 

i -  
! 

- 2x Lsin (2x  t 24) - sin (2x  t 2~fD t 2+)  1 t 27rD Lsin (2x  t 2+) - sin 2+J. - 
2x (2x +- 2lrD) 

Similarly : 
sin (2x t 4  TT D t 24)) - sin 2+ 

9 

otn (2x t 2+ ) - sin a+, v-w = 
4x 4 ( x + 2  TTD)  

r 'I I- 1 
- 2x sin 2 IT D lcos  (2x  ti!+ + 2  ~f D ) J  t 4  7r D Lcos (x + 2 + )  sin xJ - 

4x (x + 2 TT D) 

< x s i n 2 1 ~ D t 2 r r D  A 
= Q  2x (x +- 2 IT D) 

(V-W)peak - 
A l iberal  lower limit f o r  R2 is obtained by using the negative peak 

value limits for V and V-W in  equation (11- 1) i. e. , 
2 Ip I l Q  I 

G G 
R > 1 -  - - - 

and hence a liberalupper limit for F is 
I I. I , I  . (  IPI- - l Q l  

F ( 1 -  i l -  G G 

1.  1 2 1 . 1 - 3  3 1 . 1 - 3 . 5  4 u t ... 2 2. 4 2 0 4 . 6  i- 2 - 4 - 6 - 8  
1 u t -  = -  

A l P l  t -  lQ I 
G where: U = - 

G 

This upper limit for F is plotted as a function of deviation ratio, D, 

fo r  IC), ~ 10 in Figure 11- 1. (This limit is obviously very liberal, 
-I-  

TB 2 8  - 
at least  for  low values of D, since the true limit is ze ro  for D = 0. ) Hence, 

if the lower c a r r i e r  frequency, (J , is a t  least ten t imes the bit rate, we 1 
2Tf 

see f rom Figure 11- 1 that the theoretical curve of Figure 2 (i. e. for  D =. 7 15) 

cannot be in e r r o r  by more than 0.870, or  . 007 db, on the axis. 
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APPENDIX 111 

F M  RECEIVER OUTPUT NOISE I -  

- 

The development of a theoretical treatment of PCM/FM re-  

ception (with a receiver using a conventional discriminator) which would 

yield results consistent with experimental measurement would require an  

expression fo r  the amplitude distribution of the filtered video noise fo r  any 

deviation. Although no such expression has been derived, one of Rice's re- 

sults (Reference 12 equation 5.4) can be interpreted a s  the amplitude dis t r i -  

bution of unfiltered video noise for  any static deviation. In an effort to de- 

termine whether o r  not Rice's r e s u l t  might be used in s o m e  way to predict 

PCM/ FM e r r o r  probability, the theoretical amplitude distribution of un- 

filtered video noise was calculated (using Rice's result) for a 60 kc static 

deviation (measured from the center of the discriminator characteristic 

which is assumed aligned with the center of the I. F. ) using the actual 

measured I. F. bandpass characteristic of an available Nems-Clarke FM 

receiver (effective noise bandwidth of 126 kc and measured noise figure of 

7 db) and an input signal LC noise power ratio of 6 . 8  (8. 3 db). 

The video noise amplitude distribution was then measured experi- 

mentally, with the same parameters, (with both static deviation and square 

wave modulation) using the Nems- Clarke FM receiver. 

set-up was that shown in Figure 111-1. 

sults a r e  presented in Figure 111-2. 

plots is in units of equivalent deviation so that the video Itbit decision level" 

o r  "slice level" is at  -60 kc on the plots (since the deviation due to the signal 

is f 60 kc). 

at - 60 kc i s  just  the bi t -error  probability. 

it is seen that the bit-error probability measured f o r  the static case (Curve 

B) is almost identical with that calculated (Curve A). 

and calculated cumulative probability distributions agree very well. 

The experimental 

Theoretical and experimental re -  

The video noise amplitude in these 

Therefore, the value of the cumulative probability of the noise 

From the curves of Figure 111-2 

Also, the measured 

The 
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measured dynamic curve with 60 kc bit rate and no video filter (Curve C) 

agrees  fairly well with the calculated static curve, giving only slightly 

higher bit e r r o r  probability. Hence it would seem that if a video filter 

cutting ofi a t  six tenths the bit rate were now used, it should decrease the 

bit-error probability significantly since the r m s  video noise can be calcu- 

lated o r  observed to  be considerably less with the video filter while the 

signal amplitude is not appreciably affected. Curve D shows, however, 

that the bi t -error  probability is hardly affected at all by the video filter, 

although the shape of the noise amplitude distribution is modified quite a 

lot. Measurements were made using other combinations of bit-rate and 

deviation and, in general, the addition of video filtering does not appear to 

have much effect on e r r o r  probability unless both deviation and bit-rate are 

low (1/4 o r  l e s s )  compared to the I. F. bandwidth. 

also be drawn from the results of the measurements of Reference 15. 

This conclusion may 

These results indicate that  there a r e  a t  least  two separate 

phenomena causing bit-error in a conventional PCM/ F M  receiver. 

seems to be due to the occasional occurrence of I. F. noise amplitudes 

la rge  enough to  cause e r rors .  

( ra ther  than abrupt) occurrence of the "improvement threshold" phenome- 

non. 

filtering. The other phenomenon causing bit-error is the familiar video 

noise with parabolic power spectrum (Reference 10 page 52-54) which is 

affected by video filtering, but does not contribute significant e r r o r  unless 

the deviation is low compared to I. F. bandwidth. 

One 

Th i s  phenomenon appears to be a gradual 

E r r o r s  resulting f rom this phenomenon seem unaffected by video 
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APPENDIX IV 

GENERATION OF SETS O F  VARIATES FROM AN 

N-DIMENSIONAL GAUSSIAN DISTRIBUTION WITH 

SPECIFIED CORRELATION COEFFICIENTS 

The generation of random gaussian variates i s  a fairly routine 

task, particularly when a digital computer is used. 

routines a r e  available f o r  the generation of sets of independent variates 

f rom a gaussian distribution with any specified mean and variance. 

is sometimes necessary to generate sets  of variates from an n-dimensional 

gaussian distribution with specified correlation coefficients, 

pair of variates. 

independent gaus sian variates and performing a linear transformation of 

them. The required transformation equations for a specified covariance 

matr ix  a r e  derived below. 

Standard computer sub- 

But it 

A’ for each 
This can be accomplished by f i r s t  generating a set  of n 

yl’ The joint probability density function for n gaussian variates, 

y2, ---, yn, with zero means may be expressed in matrix form as (see 

Reference 1 Section 8-3): 

(IV- 1) 

where M is the (square) covariance matrix 

M =  

r 

- 8 3  - 
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. 

- 
YnYm - G Gi, fnm in which = nm 

=variance of y G2 1 i 

and where 1 MI is the determinant of M 
M-l is the inverse of M 
Y 

Y- 

is a column matrix with elements y , y , ---, yn. 

i s  the transpose of Y 
1 2  T 

For  uncorrelated gaussian variates,  v , v , -- -, v , the covariance 
1 2  n 

matrix is a diagonal matrix, D: 

lo n 
d - - -  0 

---, d a r e  the variances of v , v  , ---, v ; 
1 d2' n 1 2  n 

where d 

and the joint probability density function is: 

N2w a square matrix, M, can be reduced to a diagonal matrix such 

as D bv the matrix operation (see Reference 4,Chapter 111, Art. 10): 

D =P-l M P (IV- 3)  

where P is the "modal"-matriy whose column elements a r e  the components 

of the unit eigen vectors, e , e , - - - , e  , of the matrix M. 

vectors a r e  the normalized solutions of the matrix equation: 

These eigen 1 2  n 

M ei] = Ai ei] 
- 

is a c o l h m  matrix with elements e , e - - -  e 
il  i2' in' 
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and the A (eigenvalues of M) a r e  solutions of: 

I M -  / p I = o  

I is the identity matrix, 

Since M is a symmetric matrix, the existence of a nonsingular 

modal matrix, P, is guaranteed. 

and therefore its transpose is equal to i ts  inverse: P 

Furthermore, P is an orthogonal matrix 
T 1 =P- . 

We seek a transformation which wi l l  t ransform any se t  of V I S  (un- 

correlated gaussian variates) into an  equivalent set  of y 's  (gaussian 

variates with specified covariance matrix, M). That is, i f  g(v , v , ---, v ) 1 2  n 
of (IV-2) is evaluated for  any set of V I S ,  we wish to determine the set  of yls 

which wil l  give the same value for g(y , y , ---  
in front of the exponential are the same since 

) of (IV-1). The factors 1 2 By, 

Hence we seek the transfcrr,ration between V and Y which will make 

T - 1  V D V = Y T M - ' Y  (IV-4)  
. - 1  

But since 1) = P  M P  we have 

and therefore: 

V T D - 1  V = V  T P -1 M - 1  P V = [ V  T T  P 1 M - l  p] = p ] T M - l [ P V ]  

(IV-5) 

For  the right hand sides of (IV-4) and ( IV-5)  to be equal we  must have 

Y = P V  (IV- 6 )  

Hence this is  the required transformation between V and Y. 
note that (see Reference 4, page 115): 

But we must 
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-1 D = P  MP= 

1 so that the variance of v is A 1 

2 the variance of v is A 2 

etc. 

Therefore the V'B all have, in general, different variances. 

a r e  generating se t s  of variates it is more convenient to select all  of our 

uncorrelated variates f rom the same distribution and hence the same vari-  

ance. 

bution of unity variance and transform them, to  get the required V I S ,  with 

the transformation: 

But when we 

We may select euch variates, u , u , ---, u , from a gaussian distri-  n 1 2  

v = L U  
where 

L =  
.I-- - - -  

Then the required transformation from u's to y's is: 

(IV-7)  Y = P L U  

For the case n = 2  with h,, = A,, = g2 =l ,and  h12 = A,, = O 2 p y  

' and 

we have: 

M =  [; r] 
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yieldiig: 

Hence 

PL = 

Jz' Jz' 

e i l  

(IV-8) 
. /.I 



APPENDIX V 

THE COMPUTER PROGRAMS 

The computer program f o r  simulating the minimum-error de- 

modulation and for  computing (by model-sampling) the resulting e r r o r  

probabilities was written in Fortran language. 

with a fairly limited version of Fortran since it was initially written for, 

and the program logic checked out on, an IBM 1620 which has a more limited 

For t ran  vocabulary than does the IBM 7090 used to obtain the final results. 

It was , in  fact, written 

The simulation of the minimum-error demodulation (for two 6-bit 

1 
words, i. e. n = 2, m = 6) is accomplished by evaluating (for any given z 

, z )/Kt of equation(4. 3) for each of the 26 
2(P) I z l  2 

and z ) the expression p(y 2 / 

0 possible y 

This largest  value is then normalized (by dividing it by the sum of all the 

2 of the most 

probable y 

P of equation (4. 5); or  the estimate P of equation (4.9). This must be 

done for  many se ts  of z t s  .,-,;rich must themselves be generated by the 

computer. Actually, the I s  of (4. 3) a r e  generated rather than the Z I S  

since the f Is  represent the only attributes of the z ' s  used in the simulated 

demodulation. To insure that the j ' s  a r e  selected f r o m  the proper distri-  

bution we select data samples, Y 

bution, code the sample values in 6-bit binary PCM code of amplitude 

f S/N (+for  l8yesl1 bits and - for "no" bits) (S/N = signal-to-noise ratio = 

' 8 ,  and selecting the largest  of the 2 values so obtained. 
2(P) 

6 values) so that the result represents the probability, p M' 
Then Q = 1 - p is stored f o r  use in obtaining the estimate 

2(P)' M 

2 3 

f 

and Y2, from the specified data distri-  
1 

S/K fm) and add to the amplitude of each bit of the codes, constant 

independent "noise"va1ues selected f rom a gaussian distribution of zero  

mean and unity variance (see first  paragraph of Chapter 4). 

values a r e  the 

The resulting 

J I s *  
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For  signal-to-noise ratios less  than 2 the estimate P of (4. 5) 
2 

is used, but fo r  signal-to-noise ratio of 2 or  more the variance of this 

estimate becomes too large and hence P In this case the 

noise distribution must be modified and the Q ' s  "weighted" a s  discussed in 

Chapter 4. ,The Fortran (source) programs a r e  presented in Tables 1 and 

2 f o r  both of these cases  for n = 2 and m = 6 (i. e . ,  for two 6-bit words). 

modifications required f o r  n = 1 and/or m = 3 a r e  apparent. 

primarily of changing the appropriate indices and, fo r  the case with modi- 

of (4.9) i s  used. 3 

The 

They consist 

fied noise distribution, using a different weighting factor for  weighting the 

Q t s  ( see  Chapter 4 f o r  method of calculating the weighting factors). How- 

ever,  f o r  convenience, the programs for  n = l ,  m = 6  a r e  presented in 

Tables 3 and 4. 

To facilitate explanation of programs 1 and 2 they have been 

broken into eleven divisions which have been labeled A through K (see Tables 

1 and 2). Given below for each of these divisions i s  a brief statement of the 

purpose of that portion of the program followed by more detailed explanation 

where necessary. 

A. Store required constants. The insertion of a "CALL FTRAP(0)" 

statement following the dimension statements may be necessary 

to avoid automatic computer stoppage due to underflow arising 

from the randomness of numbers appearing in a la ter  portion of 

the program. 

B. Generate and s tore  6-bit binary PCM codes corresponding to 

each possible transmitted word. 

t l - l l t  rather than 111'1 and "0". Indexing of bit values is such that 

JC(1, K) is the Kth bit (K = 1 for least  significant bit) of the binary 

representation of 1-1. These, when multiplied by S/N, become the 

The bit values a r e  I I t  1" and 

'1 1s of equation (4. 3). 



- 90  - 

C. 

D. 

E. 

F. 

G. 

Read input data and print identification of output data. 

S N  represents signal-to-noise ratio S/N,  and RH represents the 

c or relation c oe f f icient , p , between data samples. 

Calculate required constants which depend upon input data, and 

set. initial values (of CT, CTM, and PSI). RRSCR and RRSC2 are 

used la ter  for  calculating the joint probabilities f ( Y  Y2) (see E). 

C1 and C2 are the coefficients used to transform the independent 

data samples into correlated data samples. For  program 2, "D" 

and IrGtt a r e  needed for calculating the weighting factors required 

when the modified noise distribution is used. 

Calculate and store the (64) 

These a r e  indexed such that WT(1, M) is p(Y Y ) where Y is a 

quantized data sample of amplitude 1-1 and Y is a quantized data 

sample of amplitude M-1 (see Figure 4). 

Here 

1' 

2 
values of joint probability p( Y Y2). 1' 

1' 2 1 

2 

2' Generate two quantized correlated data samples, Y and Y 

represented by JYT( 1 )  and JYT(2). 

two independent samples, W( 1) and W(2), f rom the proper gaussian 

distribution and the other two statements perform the transfor- 

mation represented by equations (4. 2). 

1 
Statements 80 and 95 generate 

Generate binary code words representing JYT( 1) and JYT(2), 

and add noise from the proper distribution to each bit of these 

codes. 

while for program 2 it is the modified distribution discussed in 

Chapter 4. 

and values greater  than 63 a r e  set  equal to 6 3 .  

plished by statements up through statement 130. 

140" loop of program 1 and the inner "DO 144" loop of program 2 

generate the "bit noises, 

them to the bits of J Y T ( ? )  and J Y T ( 2 )  ( 

mitted waveforms) to produce the noisy received bits, CU(1, K) 

F o r  program 1 the "proper" noise distribution is gaussian 

Values of J Y T (  1) l ess  than zero a r e  se t  equal to zero, 

This is accom- 

The inner "DO 

US, (1/ $ 8  of equation ( 3 . 9 ) )  and add 

I s  corresponding to t rans-  Y 
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H. 

I. 

J. 

( f (s of equation (4.3)). Fo r  program 2 the two statements im- 

mediately preceding statement 131 represent the Llauxiliary game 

of chance" referred to in Chapter 4 f o r  determining whether the 

noise is selected from a gaussian or  flat distribution (i. e., 

Figure 5a or  5c). Statement 131 generates noise values f rom a 

flat distribution of zero mean and range 2B while statement 132 

generates noise values f rom a gaussian distribution of zero mean 

and unity variance. 

reciprocal, (represented by RFN) of the appropriate weighting 

factor, 

pensate fo r  the modification of the noise distribution. 

Statements 134 through 137 calculate the 

h(N) , which multiplies Q (Y, N) of equation 4.9 to com- mw- 
Pre-calculate and store the factors required for evaluating 

b 

These factors are: 
2(P)' 

) for  each y 

(of equation (4. 3)) evaluated for  each,p (these values a r e  represented 

each q (these values a re  represented by Fl (M)  where M = q  +- 1). 

Also, statement 165 and the statement preceding it select the 

largest  value of F l ( M )  for  use in the re-scaling immediately follow- 

ing. 

Re-scale factors to utilize the full  range of computer capability 

to reprint numbers. This avoids overflow and minimizes underflow 

due $0 wide range of values of factors encountered due to random 

sampling. 

I z l ,  z2) /Kt  of equation (4. 3) (represented by t l P l r  
2(P) 

Evaluate p(y 

in the program) f o r  each y 

loop) and choose the largest value obtained (represented by IrPP8' 

in the program). Also, the sum (i. e. , IIPSII) of all of the values 

except the largest  is computed. 

(i. e. , each "1" in the "DO 180" 
2(P) 
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K. Normalize the largest value, PP, by dividing i t  by the sum of all 

values, PS t PP, so tha t  the result represents the probability, p 

Then calculate the e r r o r  probability of the most probable y 

estimate P o r  P (see Chapter 4). In program 1 , pM is re- 

presented by PEM and P is represented by AVRM. 

Q is represented by PEM and P is  represented by AVRI. 

program 2, the statement "PEI = F N  * PEM" represents the weight- 

ing of the Q's indicated in equation (4.9). 

auxiliary estimate of e r r o r  probability. 

for  experimental purposes and can be ignored here. 

M' 

2(P). 

2' 3 
In program 2, 

In 
2 

3 

AVRB represents an 

It was calculated merely 

The remaining portion of the program is for  printing the results 

and establishing formats  and is self explanatory. 

Programs 3 and 4 a r e  similar, but somewhat simpler than programs 

1 and 2. 

is slightly less than a minute f o r  programs 3 and 4, and a little more than a 

They require no additional explanation. Compilation time required 

minute for programs, 1 and 2. 
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XMY 0 5 =3  2 0 
S Y = 1 2 0 1 1 5 7 6 9  
R S Y = l o Q / S Y  - 
DO 30 K=1,6 

DO 62 1 ~ 1 9 6 3  
DO 40 K=1,6 

40 J C (  I+1 ,K)=JC(  I r K )  
DO 60 K = 1 r 6  
J C ( I + l r K ) = J C ( I + l r K ) + l  
I F ( J C ( I + l , K ) )  50rSOr60 

5 0  J C (  I + l , K ) = l  
GO T O  62 

60 J C ( I + l , K ) = - l  

- - - - -  
30 J C ( l , K ) = - l  

Table 1 Computer Program No. 1, n = 2, m = 6, 

Gaussian Noise Distribution 

A 

\I 
\ 

B 

READ I N P U T  TAPE 7 r l ~ R H  
WRITE OUTPUT TAPE 6 r 5  
WRITE OUTPUT TAPE 692,SNpRH 
WRITE OUTPUT TAPE 693 
WRITE OUTPUT TAPE 694 
W R I T E  OUTPUT TAPE 693 
R R S C = l o O / ( l * O - R H * * Z )  

HRSC2=OoS*RRSC 
Cl=SQRT ( O . S * ( l o O + R H ) )  
C2zSQRT ( 0 0 5 * ( 1 0 0 - R H ) )  
CT=1.0 
P s M = 0 0 0 
DO 72  1 ~ 1 9 6 4  
Y = I - 1  
X=(Y-XMY)*RSY 
XM( I) =X*RRSCR 

72 XMS( I )=X**2*RRSC2 
DO 7 5  I s 1 9 6 4  
DO 7 5  M=1 ,64  

7 5  W T ( 1  ,M)=EXP (XlJI( I ) * X M ( M ) - X M S (  I ) - X M S ( M )  1 \/ 

- - - -  
RRSCR=SQRT (RH*RRSC) 

- - - - - -  

ao DO 9 5  1 = 1 , 2  A 95 CALL N D R N l B ( S Y  9 O * O r k d (  I )  1 
J Y T ( l ) = C l ~ W ( l ) + C 2 * ~ ~ ( 2 ) + X M Y 0 5  
J Y T  ( 2 ) = C l * W  ( 1 )-C2*N ( 2  1 +XMY05 
DO 140 I = l r 2  

\I - - -  

C 

\/ 

D 

\/ 
\ 

E 

F 

‘ G  
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Table 1 (Continued) 

IF(JYT(1)) 9991909100  

GO TO 190 
99 JYT(I)=O 

100 IF(JYT(f)-63) 130,130,110 

130 J=JYT(f)+I 
110 JYT(I)=&~ 

DO 140 Kf1,6 
CALL NURN18 (l.O,O.OrUS) 
IF(JC(J,KI) 13691369138 

136 CU(I,KI=US-SN 
GO TO 140 

138 CU(lsK!=YS+SN 
140 CONTtNUE __ - - - 

PPR110.O 
DO 170 1=1*64 
P W R 2 2 0 a 8 
PWRl=oaO 
DO 160 R g l s 6  
IF (JC( 1 1 1 4 5 9  1 4 S d 5 0  

145 PWR2=PWRP-CU(2,K) 
PWRl=PWR1-CU11,K) 
GO TO 168 

150 PWR2=PWRa+CU(2,K) 
PWRl=PWRl+CU(l,K) 

160 CONT I RUE 
PR2 ( I 1 =PWR2*SN 
PWRl=PWRl*SN 
IF(PWRl-PPR1) 170,170,165 

165 PPRl=PWRl 
170 Fl(I)=PWHl - - -  SKP1=8OeO-PPRl 

DO 171 1~1964 
171 Fl(I)=EXP(Fl(I)+SKPi) 

PPRP=OeO 
DO 175 I = f r S 4  
s=o.o 
DO 172 M = l r 6 4  

172 S=S+FL(M)*WT( I ,MI  
IF(S) 173,173,273 

173 PRPI=-(10.0**30) 
GO T O  175 

IF(PRPI-PPRP) 17591759174 
273 PRPI=PR2(I)+ELOG(S) 

174 PPRP=PRPI 
175 PRP(I)=PRPI 
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Table 1 (Continued) 

I _ - - - -  

SKPR=80oO-PPRP 
PP=O,O 
PS=O.O 
DO 180 I = l s 6 4  
P = E X P ( P R P ( I ) + S K P R )  
I F ( P - P P )  176,1769177 

176 PS=PS+P 
GO TO 1 8 0  

177 PS=PS+PP 
PP=P 

180 CONTINUE 
PEM=PP/(PS+PP) 
P SM=PSM+P EM 
AVRC=PSM/CT 

Y T l = J Y T ( l )  
Y T Z = J Y T ( 2 )  

- - - - -  I? - - - - -  AVRM=loO-AVRC 

W R I T E  OUTPUT TAPE 6,lrCT,YTl,YTZ,PEM,AVRM 
C T=CT+l  0 
I F ( C T - 1 0 0 . 0 )  8 0 r 8 0 r 7 0  

1 FORMAT ( E 1 5 o 8 ~ E 1 5 ~ 8 , E 1 5 o 8 ~ E 1 5 0 8 , € 1 ~ 0 8 )  
2 FORMAT ( 4 H  SN=E15rn8,5X~4HRHO=E1508) 
3 FORMAT (1HO)  

5 FORYAT ( 1 H 1 )  
4 FORMAT ~ 5 X ~ 5 ~ C O U N T , 1 1 X , 3 H Y T l ~ l 2 X ~ 3 H Y T Z ~ l Z X ~ 3 H P E ~ ~ l ~ l l X ~ 4 H A V R ~ ~ )  

END 
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XMY 0 5 = 3  2 0 

Table 2 Computer Program No. 2, n = 2, m = 6 ,  

Modified Noise Disti-..'Jution 

A 

30 J C ( l , K ) = - l  
DO 6 2  1 ~ 1 9 6 3  
DO 4 0  K = 1 9 6  

DO 6 0  K = l r 6  
J C ( I + l , K ) = J C ( r + l , K ) + l  
I F ( J C ( I + l s K ) )  50950,60 

5 0  J C ( I + l , K ) = l  
GO TO 62 

60 J C ( I + l , K ) = - l  
6 2  CONTINUE 
70  READ INPUT TAPE ? , l$SN,B 

READ INPUT TAPE 7 9 l r R H  
READ INPUT TAPE 7 , 1 g A  
WRITE OUTPUT TAPE 6 9 5  
WRITE OUTPUT TAPE 6929SNsB9RH9A 
WRITE OUTPUT TAPE 693 
WRITE OUTPUT TAPE 694 
CIRITE OUTPUT TAPE 693- - - __ - 

40  J C ( I + l , K ) = J C ( I , K )  

- \I - - -  

\I 

B 

\ 

C 

RRSCR=SQRT (RH*RRSCI 
RRSCZ=OoS*RRSC 
C l=SQRT ( 0 0 5 * ( 1 o O + R H ) )  
C2=SQRT ( 0 0 5 * ( 1 0 0 - R H ) )  
C T = 1  0 
C T M = O m O  
PSI=OoO 
P I 2 R B = O 0 7 9 7 8 8 4 5 5 + B  
D = ( A / P I 2 R B ) * * 1 2  
G = ( l o O - A ) * P I Z R B / A  \I 
DO 72  1 ~ 1 9 6 4  
Y = I - 1  
X = ( Y - X M Y  )*RSY 

- X M (  I )  =XjbRRSCR 
7 2  XMS ( I 1 =X**2+RRSC2 

- - - - -  

DO 7 5  1=1964 
.. DO 7 5  M=1,64 

7 5  W T (  I , iY)=EXP ( X M (  I ) ' tXM(M)-XMS(  I ) - X f , l S ( M ) )  \I 
80 DO 9 5  1 ~ 1 9 2  
95 CALL N D I ~ N ~ ~ ( S Y , O O O I ' ~ ~ ( I ) )  

- 

D 

\ 

E 

\ 
F 
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Table 2 (Continued) 

JYT( 1 ) = C l * t l J ( l  )+C2*W (2 l+XMY05 
JYT ( 2 1 =Cl+W ( 1 )-C2*tw'12 1 +XMYO5 
RFN=D 
DO 144 1 ~ 1 9 2  
IF(JYT(1)) 9991301100 

GO T O  130 
100 IF(JYT(1)-631 130r1309110 
110 JYT(I)=63 
130 J=JYT(I)+l 

- - 

99 JYT(I)=O 

DO 144 K=1,6 
FP=RAM2B( 0 1 
IF(FP-A) 131,132,132 

131 U=RAM2B (0 1 
UM=2.0*B*U-B 
GO TO 136 

IF(UM)134,134,143 

GO TO 135 

132 CALL NDRN~B(~oO,O.OIUM) 

134 Q=-UM 

143 Q=UM 
135 IF(Q-B) 136,136,137 
136 R F N = R F N + ( G + E X P ( O o S ~ U M ~ U 2 ) )  

GO TO 138 
137 RFN=RFN*G 
138 IF(JC(J,K)I 139,139,14C 
139 CU(I,K)=UM-SN 

GO TO 144 
140 CULI,K)=UM+SN 

- - _ I - - -  
144 CONTINU€ 

PPRlrO.0 
DO 170 I r 1 ~ 6 4  
PWR2sO.O 
PWRlsO.0 
DO 160 K=1,6 
IF(JC(I,K~)145,145rl50 

145 P W R ~ = P W R ~ - C U ( ~ S K )  
PWRl=PWRl-CU(l,K) 
GO T O  160 

150 PWR2sPWR2+CU(2rK) 
PWRl*PWRl+CU(lrKI 

160 CONTINUE - PR2 L 1') =PWR2*SN 
PWRl=PWRl*SN 
IF(PWRl-PPR1) 1709170,165 

165 PPRl=PWRl 
170 F1(  I )  =PWR1 - - - - - -  
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DO 1 7 1  I=i,64 
1 7 1  F l ( I ) = E X P ( F l ( I ) + S K P l )  

PPRP=OoO 
30 1 7 5  1 ~ 1 9 6 4  
s=o.o 
DO 1 7 2  M=1,64 

1 7 2  S = S + F l ( M ) * W T ( I 9 M )  
I F  ( S  ) 1 7 3  9 173 9 2 7 3  

173 P R P I = - ( l O o 0 + ~ + 3 0 )  
GO T O  1 7 5  

273  P R P I = P R 2 ( 1 1 + E L O G ( S )  

174 PPRP=PRPI  
1 7 5  P R P ( I ) = P R P I  

I f ( P R P I - P P R P )  175 ,175 ,174  

SKPR=8C.O-PPRP - - - - - v 

Table 2 (Continued) 

I 

PS=O*U 
DO 180 1 ~ 1 9 6 4  
P = E X P ( P R P ( I ) + S K P R )  
I F ( P - P P )  1769176,177 

GO TO 180 
176 PS=PS+P 

J 
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Table 3 Computer P r o g r a m  No. 3, n = 1, m = 6 ,  

Gauss ian  Noise Distribution 

DIMENSION J C ( 6 4 , 6 ) , X S 2 ( 6 4 ) , C U ( 6 ) , P R ( 6 4 1  
XMY = 3  1 5 
x MY 1 5 = X MY + 1 0 5 
SY=XMY/2o6 
RSY=l*O/SY 
DO 10 1 ~ 1 9 6 4  
Y=I-1 

DO 30 K=1,6 

DO 70 1 ~ 1 9 6 3  
DO 40 K=1,6 

DO 60 K=1,6 
JC(I+lrK)=JC(I+l,K)+l 
IF(JC(I+lrK)) 50,50,60 

50 JC(I+l,K)=l 
GO TO 70 

60 JC(I+l,K)=-l 
70 CONTINUE 
75 READ INPUT TAPE 791,SN 

10 XS~(I)=OO~*(((Y-XMY)*RSY)**~I 

30 JC(lsK)=-l 

40 JC(I+l,KI=JC(I,K) 

WRITE OUTPUT TAPE 6 9 5  
WRITE OUTPUT TAPE 692,SN 
WRITE OUTPUT TAPE 693 
WRITE OUTPUT TAPE 6 9 4  
WRITE OUTPUT TAPE 693 
CT=loO 
P S M = O o O  

80 CALL NDRNl6 (lc09000~US) 
J=XMYlS+SY*US 
IF(J-1) 100,130~110 

,100 J=l 
GO TQ 130 

110 IF(J-64) 130,130,120 

130 DO 150 K=1,6 
120 J=64 

C A L L  NDRNlB (100,0.01US) 
IF(JC(J,K)) 144,144,146 

GO T O  150 
144 CU(K)=US-SN 

146 CU(K)=US+SN 
150 CONTINUE 

PPWR=OoO 
DO 162 1~1964 
P WR = 0 0 
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Table 3 (Continued) 

DO 160 K = 1 9 6  
I F ( J C ( I 9 K ) )  1 5 4 , 1 5 4 9 1 5 6  

1 5 4  PWR=PWR-CUIK) 
GO TO 160 

1 5 6  PWR=PWR+CU K 1 
160 CONTINUE 

PWR=PWR*SN-XS2 ( I )  
IF(PWR-PPWR) 1 6 2 9 1 6 2 , 1 6 1  

161 PPWR=PWR 
1 6 2  P R (  I )=PWR 

SK=80oO-PPWR 
PP=OoO 
PS=O.O 
DO 186 1 ~ 1 9 6 4  
P = E X P ( P R ( I ) + S K )  
I F ( P - P P )  1 7 0 , 1 7 0 9 1 7 5  

170 PS=PS+P 
GO TO 180 

1 7 5  PS=PS+PP 
PP=P 

180  CONTINUE 
PEM=loO-PP/ (PS+PP)  
P SM = F SM+P El.1 
A V R M =P S I4 / C T 
YJ=J-1 
W R  I T E OU TPUT TAP E 6 6 C T  9 " J 9 PP 9 P 5 9 P EM 9 AV RM 
CT=CT+1 0 
I F ( C T - 1 0 0 o O ~  8 0 , 8 0 9 7 5  

1 FORMAT (E15o8~E1508,E15o8,E1508) 
2 FORPlAT ( 4 H  S N = E 1 5 o 8 )  

4 FORMAT ('>X ,2HCT, 11X,2HYJ 11XtZb'PP r l l X  ,2HPS, 1 O X  93HPEM99X94HAVRM) 
3 FORMAT ( 1 H O )  

5 FORMAT t i . i i 1 )  
6 FORMAT ~ 1 X ~ ~ l L o 6 ~ 1 X ~ E 1 2 o 6 r l X E l 2 o 6 , l X ~ ~ l 2 ~ 6 ~ l X ~ E l 2 o 6 ~ l X ~ E l 2 o 6 ~  

END 
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Table 4 Computer Program No. 4, n = 1, m = 6 ,  

Modified Noise Distribution 

D I M E N S I O N  
X r l Y  = 3 1  5 
XMY 15=XMY.+l. 5 
SY=XMY/2.6 
RSY=l.O/SY 
DO 1 0  1 ~ 1 9 6 4  
Y = I - 1  

10 X S 2 ( 1 ) = 0 . 5 * ( ( ( Y - X M Y ) * R S Y ) * * 2 )  
DO 3 0  K=1,6 

3 0 J C  (-1 3 K 1 =- 1 
DO 70  1 ~ 1 9 6 3  
DO 40 K = l s 6  

DO 6 0  K = l s 6  
J C ( I + l r K ) = J C ( I + l , K ) + l  
I F ( J C ( I + l , K ) )  5 0 9 5 0 , 6 0  

5 0  J C ( I + l , K ) = l  
GC) TO 70 

60 J C ( I + l , K ) = - l  
7 0  CONTXNUE 
7 5  READ INPUT TAPE 7 s 1 9 S N s B  

READ I N P U T  TAPE 7 9 1 9 A  
WRITE OLTPUT TAPE 6 9 5  

TAPE 6 s 2 r S N r Y 9 A  
TAPE 6 9 3  
TAPE 694 
TAPE 693 

JC ( 6 4 9 6  1 9XS2 ( 6 4 )  sCU ( 6  1 9PR ( 6 4 )  

40 J C ( I + 1 9 K ) = J C ( I 9 K )  

WRITE OUTPUT 
W f i I T E  OUTPUT 
WRITE OUTPUT 
WRITE OUTPUT 
C T = 1  0 
CTM=O 0 
PSI=O.O 
PIZRB=0 .797C 455WB 
D = ( A / c 1 2 ~ @ ) * * 6  
G= ( 1 .L - A )  *Pi2RB/A 

J = X M Y 1 5 +S Y X-lJ S 
80 C A L L  tqORfv1B ( 1 e O ~ O o O ~ U S )  

TF(J-1) 100s1309110 
100 J = l  

GO T O  1 3 0  
110 I F ( J - 6 4 )  1 3 0 , 1 3 0 9 1 2 0  
1 2 9  J = 6 4  
130 ‘IFN=D 

DO 1 4 4  K = l . 9 6  

I F ( F P - A )  1 3 1 9 1 3 2 9 1 3 2  
FP=RAV2B ( 0 1 

1 3 1  U=RAMZB(O)  
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Table 4 (Continued) 

ur~i=2. O*B+U-B 
GO T O  1 3 6  

I F ( U M ) l 3 4 , 1 3 4 , 1 4 3  

GO TO 1 3 5  

1 3 2  C A L L  NDRNlB(loO,O.O,UM) 

1 3 4  Q=-UF1 

1 4 3  Q=UM 
1 3 5  I F ( Q - R )  136,136,137 
1 3 6  RFN=RFN+(G+EXP(OoS*UM**2)) 

GO TO 1’38 
1 3 7  RFN=RFN*G 
138  I F ( J C ( J , K ) )  139,139,140 
1 3 9  CU(K)=UM-SN 

GO T O  144 
140 CU(K)=UM+SN 
144 CONTINUE 

PPWR=OoO 
DO 1 6 2  1 ~ 1 9 6 4  
PWR=OmO 
DO 1 6 0  K=1,6 
I F ( J C ( 1 , K ) )  154,154,156 

1 5 4  Pb!R=P!JR-CU ( K ) 
GO TO 1 6 0  

1 5 6  PWR=PWR+CU(K) 
160 CONT I NlJE 

PWR=PWR*SN-XS2 ( I )  
I F ( PWR-PPWR 1 1 6 2  9 1 6 2  9 1 6 1  

1 6 1  PPWR=P!417 
1 6 2  P R ( I ) = P W R  , 

SK=80.0-PPW5? 
PP=O.O 
PS=O.C 
DO 1 8 q  !=1,64 
P = E X P I P R ( l ) + S K )  
I F ( P - P P )  170,170,175 

170 PS=PS+P 
GO T O  18r )  

1 7 5  PS=Pq+PP 
PP=P 

1 8 0  CONT I NU€ 
PEM=l.O-PP/(PS+PP) 
FN=loO/RFN 
PE I =FN*PEM 
P S I = P S I + P E I  
AVRI=PSI /CT  
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T a b l e  4 (Continued) 

C TM= C T M+F N 
AVRB=PSI /CTM 
Y J = J - 1  
WRITE OUTPUT TAPE ~ ~ ~ ~ C T , Y J ~ F N , P E I , P E M I A V R I , A V R I ~ A V R I ~  
CT=CT+l.n 
IF(CT-100o0) 80980975 . 

1 FOR’IAT ( E 1 5 o 8 , E 1 5 o 8 9 E 1 5 o R , E 1 5 . 8 )  
2 FORhIAT ( 4 H  SN=E15o8,5X12HB=E15o9,5X,2HA=E15.8)  
3 FORVAT (1HO) 
4 FORMAT ~ 6 X ~ 2 H C ~ ~ l l X ~ 2 ~ Y J ~ l l X , 2 H F N , 1 O X , 3 H P E I , 1 O X ~ 3 H P E ~ ~ 9 X ~ 4 H A V R I ~  

5 FORMAT ( 1 H 1 )  
19X s4HAVRU 1 

6 FORtIIAT ~ 1 X ~ E 1 2 ~ 6 ~ 1 X ~ E 1 2 o 6 ~ 1 X I E 1 2 . 6 , 1 X , E 1 2 . 6 , 1 X , E l 2 ~ 6 ~ l X ~ E l 2 o 6 ~  
l l X 1 E 1 2 o b ~ l X , E l Z o 6 )  
END 



APPENDIX VI  

COMPUTATION RESULTS 

The minimum attainable word e r r o r  probabilities with inter- bit 

dependence were obtained by monte-carlo computation using the IBM 7090 

computer of the University of Michigan Computing Center. 

6-bit codes are presented in Table 5 and the results for  3-bit codes a r e  

presented in Table 6. 

S/N 

f 
L 

T 

P 

The results for 

. -  
The following symbols a r e  used in these tables: 

= Signal-to-noise ratio = S/K {a 
= Correlation coefficient between samples 

= Number of simulated demodulations performed 

=Execution time required on computer 

=Monte-carlo estimate (P or  P of Chapter 4)  of 
2 3 

W' word-error probability, P 

As indicated in these tables, several  hundred simulated de- 

modulations were used (in most cases)  for each estimate of word-error 

probability. 

6-bit codes due to  the courseness of quantization in the 3-bit case. 

fortunately, more can be tolerated since the computation time per de- 

modulation is 'much less  for the 3-bit case.)  

(More demodulations were required for 3-bit codes than for 

But, 

It is of interest  to observe the behavior of the estimates a s  the 

number of demodulations used in the estimate increases. 

tailed results obtained for individual demodulations and for averaging of 

the results of f rom one to one hundred demodulations a r e  presented in 

Tables 7,8,  and 9 for three different combinations of S/N and . These 

results a r e  presented in the computer format where . d  d d ----E b b 

. That is, for example, .3670103-02 represents ( .d d d - - - - ) lo  

represents (. 367010)lO 

(count or  CT) is N, the las t  column gives the estimate, P o r  P obtained 

with the preceding N demodulations. 

Typical de- 

P 
1 2 3  1 2  blb2 

- 2  1 2 3  
=. 00367010. If the number in the f i r s t  column 

2 3' 
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Monte-carlo computations a r e  not necessary with no inter-bit 

dependence. 

mined directly by the use of gaussian tables and equation (1.4). 

responding word- e r r o r  probabilities a 

determined from: 

For  this case, bi t -error  probabilities, PED may be deter-  

Cor- 

for m-bit words can then be pW’ 

m P w = l  - (1- P ) 
E 

Results for  m = 6 and for m = 3 are presented in Table 10. 

Graphical summaries and discussions of all results a r e  presented 

in Chapter 5. 



S/ N 
0 ,  '107 
-- 
0.707 

0.707 

0.707 

0.707 

0.707 

1. 0 

1.0 

1.0 

1.0 

1. 0 

1.0 

1.414 

1.414 

1.414 

I ,  414 

1.414 

1.414 
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Table 5 

Computed Word-Error Probabilities for 6-Bit Worda, - 

P - L T( see. ) -- 
11 0.778 

0.7 200 82 0.743 

100 
+ 
0 

0.5 200 82 0.750 

0 .9  200 82 0.730 

0 . 9 5  200 02 0.719 

0.98 200 82 0.685 

0 

0. 5 

0.7 

0.9 

0.95 

0.98 

0 

0. 5 

0. 7 

0.9 

0.95 

0.98 

100 

300 

300 

300 

300 

300 

200 

300 

300 

300 

400 

400 

11 

123 

123 

123 

123 

123 

22 

123 

123  

123 

164 

164 

0. 589 

0.600 

0. 563 

0. 556 

0. 538 

0.489 

0.  366 

0. 351 

a. 311 

0. 300 

0. 275 

0. 250 
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Table 5 (Continued) 

L T( sec.  ) P 

2. 0 0 300 35 0. 116 

2. 0 0. 5 300 129 0. 1126 

2. 0 0 . 7  300 129 0. 1040 

2 . 0  0.9 300 129 0.0986 

2 .0  0.95 300 129 0.0865 

2. 0 0.98 300 129 0.0783 

+ SIN 

Total Time = 2446 sec. =40.77 min. 

i 
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Table 6 

S/ N 
0.707 . 
0.707 

0.707 

0.707 

0.707 

0.707 

1.0 

1.0 

1. 0 

1.0 

1.0 

1.0 

1.414 

1.414 

1.414 

1.414 

1.414 

1.414 

Computed W o r d - E r r o r  Probabi l i t ies  F o r  

3-Bit W o r d s ,  n = 2  

,P 
0 

0. 5 

0. 7 

0.9 

0.95 

0.98 

0 

0. 5 

0.7 

0. 9 
0.95 

0.98 

0 

0. 5 

0. 7 . 

0.9 

0,95 

0.98 

L 
7 00 

400 

400 

400 

400 

400 

700 

300 

300 

300 

300 

300 

1500 

400 

400 

400 

400 

400 

T( sec. ) 

18 

15.6 

15. 6 

15. 6 

15.6 

15. 6 

18 

11.7 

11.7 

11.7 

11.7 

11.7 

42 

15. 6 
15. 6 

15. 6 
15. 6 

15. 6 

P 

.416 

.415 

.415 

. 367 

.356 

.298 

.302 

.281 

.268 

.235 

. 219 

. 177 

. 153 

. 146 

. 124 

.0925 

.0860 

.0666 
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S / N  

2. 0 

2. 0 

2. 0 

2. 0 

2. 0 

2. 0 

--f- 0 

0. 5 

0. 7 

0.9 

0.95 

0.98 

Table 6 (Continued) 

L T (sec.  ) P 

1500 42 .0477 

400 19,4 0449 

400 19.4 .0372 

400 19.4 .0262 

800 19.4 . 0187 

808 19.4 .0159 

Total Time = 431. 5 sec. =7 .  19 min. 
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Table 7 

C T  =No.  of 
Demodulations 

Detailed Results For S/N = 1. 0, Q =o.  9 
I 

PEM = p = 1-Q M AVRM = P  
2 

9 
10 

11 

12 

13 

14 

15  

16 

17 

18 

19 
20 

21 

22 

23 

24 

25 

26 

* 27 

~ ~- 

-376593433 00 

. 668108283 00 

.439124773 00 

. 139769643 00 

. 234745713 00 

. 138003513 00 

.382295353 00 

. 215355713 00 

. 295193633 00 

. 341636143 00 

.578356013 00 

.479147413 00 

.489441513 00 

. 395893343 00 

.696158953 00 

.64513706E 00 

.485437363 00 

. 517754743 00 

. 341815433 00 

.57160394E 00 

. 229049223 00 

. 205300063 00 

. 314395293 00 

. 284605063 00 

. 534459613 00 

-612891263 00 

.780048613 00 

.623406573 00 

.477649153 00 

-505391183 00 

-594100973 00 

.628331643 00 

.667275783 00 

.660194203 00 

.675750463 00 

.678978893 00 

-676917393 00 

.653710723 00 

.642639213 00 

,632479153 00 

.630452553 00 

.608678453 00 

. 592814983 00 

. 588211903 00 

. 582324873 00 

. 586317493 00 

. 578421423 00 

. 587589493 00 

. 597003603 00 

-600855833 00 

.605628293 00 

.600024773 00 

. 591835703 00 

. 578062213 00 



CT =No.  of 
Demodulations 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40  

41 

4 2  

4 3  

44 

4 5  

46 

47 

48 

49 
50 

51 

52 

53 

54 

55 
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Table 7 (Continued) 

P E M = p  = 1 - Q  M AV R M  =P2  

.455108603 00 

-248586993 00 

-491262713 00 

.365328623 00 

.213062013 00 

-332977673 00 

.424443623 00 

.425590663 00 

.459551303 00 

.531349003 00 

.336586863 00 

.393305823 00 

-668242443 00 

.456552173 00 

. 172613733 00 

.479588113 00 

.351081433 00 

.580048633 00 

.239560983 00 

.307855543 00 

.624203023 00 

.434153093 00 

,745336763 00 

.281346603 00 

. 154841323 00 

.350857203 00 

.815923033 00 

,577522533 00 

.576877543 00 

.582896013 00 

.580424053 00 

. 582173973 00 

. 588572843 00 

. 590950103 00 

.590497343 00 

.590037693 00 

.588660223 00 

. 585416733 00 

. 587469263 00 

.587962223 00 

.581557113 00 

.580627613 00 

.586502833 00 

.584965833 00 

-586419303 00 

.582720013 00 

-586583473 00 

.588829463 00 

.584391283 00 

.584012823 00 

.577425843 00 

.580195013 00 

,585290463 00 

-586495233 00 

. 579043043 00 

. 576196393 00 
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Table 7 (Continued) 

CT =No. of 
Demodulations 

56 

57 

58 

59 

60 

61 

62 

63  

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

PEM = pM = 1-Q AVRM =P2  

.653558283 00 

.313506633 00 

.696669153 00 

.49 1656323 00 

.440637753 00 

.764085083 00 

.766613883 00 

.729341653 00 

. 174512963 00 

. 241809733 00 

-671121353 00 

. 352387593 00 

.44011146E 00 

.518462813 00 

. 358282283 00 

-837 124 183 00 

. 314664573 00 

-611906193 00 

.42824259E 00 

. 305499553 00 

.744867513 00 

.405570593 00 

. 565347183 00 

.814497523 00 

.438019693 00 

.456831713 00 

.417392253 00 

~ 

.572093633 00 

.574100643 00 

a .  569432203 00 

.568396803 00 

.56824556E 00 

.562797523 00 

. 557484433 00 

.552931643 00 

.557190323 00 

.560282633 00 

.55677652E 00 

.558132283 00 

.558158103 00 

.557047663 00 

. 558257233 00 

. 552688483 00 

.554530813 00 

. 552250853 00 

.552514463 00 

.554407613 00 

.550469783 00 

-551040693 00 

.549548543 00 

-544940363 00 

.545153363 00 

.54512887E 00 

.545585923 00 



CT =No. of 
Demodulations 
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Table 7 (Continued) 

PEM = p = 1-Q M AVRM =P2 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93  

94 

95 

96 

97 

98 

99 
100 

.294962673 00 

. 175713133 00 

.459337863 00 

.91628870E 00 

. 538543783 00 

.41588623E 00 

.384746513 00 

.34859136E 00 

.234390553 00 

. 151046133 00 

. 303223473 00 

.441729633 00 

.26579398E 00 

.706737223 00 

.379867 113 00 

.784449 12E 00 

. 23153388E 00 

. 130793213 00 

.547507033 00 

.550802033 00 

.550682743 00 

.545252843 00 

.544289663 00 

.544742213 00 

.545534483 00 

.546710863 00 

.549116343 00 

.55237544E 00 

.553928153 00 

.553974353 00 

.555871523 00 

.553136013 00 

,553826703 00 

,550374913 00 

.552577853 00 

.555744153 00 
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Table 8 

Detailed Results For SIN = 2. 0, 0 = 0.98 
I 

CT =No.  of 
Demodulations 

h 

h 
P E I  =Q, PEM = Q  

1 

2 

3 

4 

5 

6 

7 

8 

9 
10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

AVRI =P3 

.8872443-02 

. 1226093-01 

. 1052593-01 

. 1670403-03 

.248927E-02 

. 1951853-02 

. 1966213 00 

. 3392793-02 

. 2000143 00 

. 3847683 00 

.9230013-02 

. 2983053-01 

.2194303-03 

.3565023-03 

. 2582503-03 

-3542433-02 

.9162383-02 

.2865763 00 

.9229033-03 

. 1238283 00 

.6596483-02 

. 2386203-01 

.2474683-02 

.4744233-01 

. 1299463-04 

. 1326783 00 

. 237831E-01 

. 1216953-01 

.8770473-02 

. 3961133-01 

. 1756033-03 

.4362593-02 

.9453043-02 

.3670943 00 

.3009013-02 

.4131943 00 

.3283243 00 

. 1054493-01 

.4620273-01 

. 1260493-03 

.2645853-03 

-2666493-03 

. 1617223-02 

. 5343453-02 

.2125773 00 

. 1008493-02 

. 1377723 00 

. 1181513-01 

. 2032253-01 

. 2237763-02 

.2461943-01 

. 1377613-04 

. 2118303 00 

.5651353-01 

.8872443-02 

. 1056673-01 

. 1055313-01 

.7956583-02 

.6863123-02 

.604457E-02 

. 3326973-01 

. 2953513-01 

.4847723-01 

.8210633-01 

.7548123-01 

.7167703-01 

.6618023-01 

.6147853-01 

.573972E-01 

-5403133-01 

.5139193-01 

.6445773-01 

.6111373-01 

.6424943-01 

.6150413-01 

.5979313-01 

-5730093-01 

.5689023-01 

-5461513-01 

.5761753-01 

.5636443-01 



CT =No. of 
Demodulations 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

4 2  

4 3  

44 

45 

46 

47 

48 

49 
50 

51 

52 

53 

54 

55 
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Table 8 (Continued) 

h PEI = Q  PEM = Q  
3 

AVRI = P  

.3930973-02 

. 1848773 00 

. 1657173 00 

.5218233-01 

.8633063-01 

. 1841073-01 

.4591593-02 

.4116533 00 

. 1857373 00 

.4462483-02 

. 101331E 00 

.5562973-02 

.565422E-02 

. 1719043-01 

.2267383 00 

.645816E-02 

.3266653-01 

.2080193-02 

. 1471613-01 

.501775E-01 

. 3380543-03 

.616801E-01 

. 2276853-01 

.6863953-02 

.2976353 00 

.2736063 00 

.4572603-02 

. 1982303-01 

. 3998553-02 

.4580203 00 

. 1090823 00 

.3277553 00 

.3982273 00 

.8011133-02 

.4205603-02 

.571774E 00 

.lo18513 00 

.4969393-02 

. 1394973 00 

.2348133-01 

.2519313-01 

. 1331763-01 

.3067093 00 

. 1237303-01 

.5498063-01 

. 2220583-02 

.8205093-02 

.33411OE-01 

.2380093-03 

.1229263 00 

.2261733-01 

.6779303-02 

.3699363 00 

.3057513 00 

.2453423-02 

.3901673-01 

.5449183-01 

.5898783-01 

.625455E-01 

.6221123-01 

.6296493-01 

,6161483-01 

.5993763-01 

.6998663-01 

.7320193-01 

.7134413-01 

.7213323-01 

.7042633-01 

,6880703-01 

.6754803-01 

.7133833-01 

.6982943-01 

.6898483-01 

.6749803-01 

.6635063-01 

.6600653-01 

.6463843-01 

.6457803-01 

.6374183-01 

.6262663-01 

.6714603-01 

.710414E-01 

.6981053-01 

.6890173-01 



I 116 - 

Table 8 (Continued) 

CT =No.  of 
Demodulations 

h 

hl' 
P E I = Q  -y PEM = Q  AVRI =P3 

56 

57 

58 

59 

60 

61 

62 

63 
64 

65 

66 
67 

68 

69 
70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

-2904633-03 

.6942423-02 

. 190171E-01 

.4795493-02 

. 1920553 00 

. 1909343 00 

. 1644643-01 

.7685793-01 

. 1694903-02 

.58454IE 00 

-5387453-01 

.9091783-01 

. 2312973 00 
A A  c)r?-  n v  . **4J33L-U1 

.2274513-01 

. 1577473-01 

. 1812123 00 

.3646423-04 

.8174123-01 

. 1583623 00 

.4369043-02 

.2730023-02 

.3185543-01 

.2287973-01 

.2387223 00 

.6921963-01 

.7857963-05 

. 3972583-03 

. 3855793-02 

.2380553-01 

.4510623-02 

.6063133 00 

. 3411793 00 

. 1 1  22583-01 

.4346913-01 

. 1630293-02 

. 2537373 00 

. 3154603 00 

.5462193-01 

. 2740673 00 
1 - A -  in-  nn . l & U l l U L  vu  

.254028E-01 

. 1379363-01 

.4136113 00 

. 2567473-04 

. 1108053 00 

.2694233 00 

. 2770113-01 

. 1981313-02 

. 1874263-01 

. 2128243-01 

. 1469373 00 

.3024603-01 

. 2265723-04 

.6767653-01 

.6661103-01 

.6579043-01 

.647563-01 

.6687823-01 

.6891193-01 

.680657E-01 

.6820533-01 

.67166OE-01 

.7512563-01 

.7480373-01 

.7504423-01 

.7734203-01 
T / O / C I -  n l  . I V O U J A L - - V I  

.7609193-01 

.7524243-01 

.7671423-01 

.7566383-01 

.7574603-01 

.7684753-01 

.7589383-01 

-7494373-01 

.7439123-01 

.7373923-01 

.7580153-01 

-7572023-01 

.7479693-01 



. CT =No. of 
Demodulations 

8 3  

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 
96 

97 

98 

99 

100 

PEM = Q  
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Table 8 (Continued) 

h 

h* 
P E I = Q  - AVRI =P3 

.4190953-01 

. 1433003-01 

. 1502503-01 

.3737123 00 

.4438493-02 

-5637313 00 

. 1090393-01 

. 1964683 00 

. 1504773-02 

.311043E-02 

.2082613-03 

.9643723-02 

. 1420383-01 

. 1988943-01 

.237481E 00 

.5216613-02 

.6936493-01 

.8135983-03 

~~ 

. 1952603-01 

. 1442763-01 

.3585173-01 

.445742E 00 

. 2697913-02 

.4239973 00 

. 1096183 00 

.558084E 00 

. 3191583-02 

. 1139833-01 

. 1459493-03 

. 1012693-01 

.8009903-02 

.443432E-01 

.4805413 00 

.7221643-02 

. 2752213-01 

.2254433-02 

.7440073-01 

.7368553-01 

.7299543-01 

.7649213-01 

-7566393-01 

.812101E-01 

.8042023-01 

.8170963-01 

.8082823-01 

.7998353-01 

.7912573-01 

.7838653-01 

.7771093-01 

. 7 7 1 0 8 6 3 - 0 1  

.7876193-01 

.780114E-01 

.7792413-01 

.7715303-01 
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Table 9 

Detailed Results For S/N = 1.414, Q = o  (or n = 1) 

CT =No.  of 
Demodulations 

9 
10 

11 

12 

1 %  -- 
14 

15 

16 

17 

18 

19 
20 

21 

22 

23 

24 

25 

26 

27 

PEM = Q  AVRM =P2 

.8389063 00 

.4963833-01 

.7582643 00 

.7634333-01 

. 1462043 00 

.3828933 00 

.292061E 00 

.6628383 00 

.2301333 00 

.6027943-01 

,281032E 00 

.5556666-01 

. 2 0 5 7 ? ? 3  00 

.2822323-01 

.4309023 00 

.3813553 00 

.3858033 00 

.4086603 00 

,6532693 00 

.208512E 00 

.8054473 00 

.493588E 00 

.4883093 00 

.2110283 00 

. 2001543 00 

.5668573-01 

.3249823 00 

.838906E 00 

.4442723 00 

.5489363 00 

.4307883 00 

. 3738713 00 

.3753753 00 

.363473E 00 

.4008933 00 

.381920E 00 

.3497563 00 

.3435083 00 

.3195133 00 

-3107663 00 

.290584E 00 

.299939E 00 

.30502?E 00 

-3097793 00 

.3152723 00 

.333062E 00 

.326834E 00 

.3496253 00 

.356169E 00 

-3619143 00 

. 3556273 00 

-3494083 00 

.3381503 00 

.3376623 00 



CT =No. of 
Demodulations 
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Table 9 (Continued) 

PEM = Q  
2 

AVRM = P  

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 
50 

51 

52 

53 

54 

55 

56 

. 1142523 00 

. 1899533 00 

.6044153-01 

.4315873 00 

.3363663 00 

. 1353353 00 

. 1946433 00 

.4103373 00 

.5809403 00 

.2897873 00 

.2903453 00 

. 1225333 00 

.2595943 00 

.2112193 00 

.7265273 00 

,4663443 00 

.4334173-01 

.6425683 00 

.4001293 00 

.4513923 00 

. 1016683-03 
,5167803 00 

.6573253 00 

.2621413 00 

.4202333 00 

.4455813 00 

. 1219363 00 

.4566853 00 

.4874273 00 

.3296833 00 

.324865E 00 

.3160513 00 

.3197783 00 

.3202963 00 

.3146913 00 

-3111603 00 

. 3139943 00 

.3214093 00 

.3205553 00 

.3197603 00 

.314702E 00 

.313325E 00 

.310834E 00 

.3207323 00 

.324118E 00 

.3177373 00 

.3249553 00 

-3265903 00 

.3292453 00 

.3225973 00 

.3265603 00 

.333176E 00 

.3317833 00 
Jw 

.333484E 00 

-3355993 00 

-3316423 00 

.333916E 00 

.3366573 00 



CT =No. of 
Demodulations 
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Table 9 (Continued) 

PEM = Q  AVRM =P2 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 
70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

.8060383 00 

.4000243 00 

.4237233 00 

,4467133 00 

,6050453 00 

.5909713 00 

.2855803 00 

.371234E 00 

.5624083 00 

.8266023-01 

.2944453-01 

.370704E 00 

,1829513 00 

.422965E 00 

,5192263 00 

.6182353 00 

.2751293 00 

.6783033 00 

.278614E 00 

.2946483 00 

.2518293-01 

.6950513 00 

,1936743 00 

.7905833 00 

.1537283 00 

.5470473 00 

.7028933-01 

.7313463 00 

.6890683 00 

.3448923 00 

.3458423 00 

.347162E 00 

.3488213 00 

,3530223 00 

,3568603 00 

,3557283 00 

.3559703 00 

,3591463 00 

.354957E 00 

.3500993 00 

.3504023 00 

,3479756 00 

.3490463 00 

,3514433 00 

.355149E 00 

.354052E 00 

. 3584343 00 

.357370E 00 

.3565453 00 

,352241E 00 

.3566363 00 

. 3545733 00 

.3600243 00 

.3574773 00 

. 3597893 00 

.3563013 00 

.360765E 00 

.3646283 00 
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CT =No. of 
Demodulations 

Table 9 (Continued) 

P E M  = Q  AVRM =P2  

86 

87 

88 

89  

9 0  

91 

9 2  

9 3  

9 4  

9 5  

96 

97 

98 

99 
100 

. 2 6 6 6 6 8 3  00 

.360057E 00 

. 7 0 8 6 1 2 3 - 0 1  

, 3 5 9 2 9 7 3  00 

.7064863-01  

. 2 4 4 9 2 8 3  00 

. 3 9 6 5 0 8 3  00 

, 7 5 9 0 8 7 3 - 0 1  

. 4 7 2 7 9 1 3  00 

, 3 1 2 4 5 9 3  00 

.599942E 00 

. 2 3 8 8 4 0 3  00 

. 6 6 5 2 6 2 3  00 

. 6 6 2 3 2 7 3  00 

. 2 1 5 9 5 1 3  00 

. 3 6 3 4 8 9 3  00 

. 3 6 3 4 4 9 3  00 

.360124E 00 

. 3 6 0 1 1 5 3  00 

. 3 5 6 8 9 9 3  00 

, 3 5 5 6 6 8 3  00 

.356112E 00 

. 3 5 3 0 9 9 3  00 

. 3 5 4 3 7 3 3  00 

. 3 5 3 9 3 1 3  00 

. 3 5 6 4 9 4 3  00 

.355281E 00 

. 3 5 8 4 4 4 3  00 

.361514E 00 

.360058E 00 
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Table 10 

Calculated Word-Error Probabilities For No Inter-Bit 

S. 
K m  

S/N = 

,707 ( - 3  db) 

LO (Odb) 

1.414 (t 3 db) 

2 .0  ( + 6  db) 

3.0 (t 9. 54 db) 

4.0 (t 12 db) 

Dependence 

P (6-bite) W P (3-bits) pE W 

. 24 .561 .808 

. 159 404 .645 

. 0 7 9  ,218 . 3 9  

.0228 .067 . 1 3  

.00135 00405 ,0081 

.000032 .000096 .00019 
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